International Telecommunication Union

ITU-T H.264

TELECOMMUNICATION (11/2007)

STANDARDIZATION SECTOR
OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Infrastructure of audiovisual services — Coding of moving
video

Advanced video coding for generic audiovisual
services

ITU-T Recommendation H.264

ITU-T H-SERIES RECOMMENDATIONS
AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100-H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES
General H.200-H.219
Transmission multiplexing and synchronization H.220-H.229
Systems aspects H.230-H.239
Communication procedures H.240-H.259
Coding of moving video H.260-H.279
Related systems aspects H.280-H.299
Systems and terminal equipment for audiovisual services H.300-H.349
Directory services architecture for audiovisual and multimedia services H.350-H.359
Quality of service architecture for audiovisual and multimedia services H.360-H.369
Supplementary services for multimedia H.450-H.499
MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures H.500-H.509
Mobility for H-Series multimedia systems and services H.510-H.519
Mobile multimedia collaboration applications and services H.520-H.529
Security for mobile multimedia systems and services H.530-H.539
Security for mobile multimedia collaboration applications and services H.540-H.549
Mobility interworking procedures H.550-H.559
Mobile multimedia collaboration inter-working procedures H.560-H.569
BROADBAND AND TRIPLE-PLAY MULTIMEDIA SERVICES
Broadband multimedia services over VDSL H.610-H.619

For further details, please refer to thelist of ITU-T Recommendations.

I TU-T Recommendation H.264

Advanced video coding for generic audiovisual services

Summary

This Recommendation | International Standard represents an evolution of the existing video coding standards (H.261,
H.262, and H.263) and it was developed in response to the growing need for higher compression of moving pictures for
various applications such as videoconferencing, digital storage media, television broadcasting, Internet streaming, and
communication. It is also designed to enable the use of the coded video representation in a flexible manner for a wide
variety of network environments. The use of this Recommendation | International Standard allows motion video to be
manipulated as a form of computer data and to be stored on various storage media, transmitted and received over existing
and future networks and distributed on existing and future broadcasting channels.

The revision approved 2005-03 contained modifications of the video coding standard to add four new profiles, referred
to as the High, High 10, High 4:2:2, and High 4:4:4 profiles, to improve video quality capability and to extend the range
of applications addressed by the standard (for example, by including support for a greater range of picture sample
precision and higher-resolution chroma formats). Additionally, a definition of new types of supplemental data was
specified to further broaden the applicability of the video coding standard. Finally, a number of corrections to errors in
the published text were included.

Corrigendum 1 to ITU-T Rec. H.264 corrected and updated various minor aspects to bring the ITU-T version of the text
up to date relative to the April 2005 output status approved as a new edition of the corresponding jointly-developed and
technically-aligned text ISO/IEC 14496-10. It additionally fixed a number of minor errors and needs for clarification and
defined three previously-reserved sample aspect ratio indicators.

Amendment 1 "Support of additional colour spaces and removal of the High 4:4:4 Profile" contained alterations to
ITU-T Rec. H.264 | ISO/IEC 14496-10 Advanced Video Coding to specify the support of additional colour spaces and to
remove the definition of the High 4:4:4 Profile.
NOTE — ITU-T Rec. H.264 is a twin text with ISO/IEC 14496-10 and this amendment is published in two different documents in
the ISO/IEC series:
— The removal of the High 4:4:4 profile is found in ISO/IEC 14496-10:2005/Cor.2.

— The specification for support of additional colour space will be found in ISO/IEC 14496-10:2005/Amd.1.

Amendment 2 "New profiles for professional applications" contained extensions to ITU-T Rec. H.264 | ISO/IEC 14496-
10 Advanced Video Coding to specify the support of five additional profiles intended primarily for professional
applications (the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, CAVLC 4:4:4 Intra, and High 4:4:4 Predictive
profiles) and two new types of supplemental enhancement information (SEI) messages (the post-filter hint SEI message
and the tone mapping information SEI message).

Amendment 3 "Scalable video coding" contained extensions to ITU-T Rec. H.264 | ISO/IEC 14496-10 Advanced Video
Coding to specify a scalable video coding extension in three profiles (the Scalable Baseline, Scalable High, and Scalable
High Intra profiles).

The H.264 edition published in 2005-11 included the text approved 2005-03 and its Corrigendum 1 approved 2005-09.
H.264 (2005) Amd.2 (2007) was available only as pre-published text since it was superseded by H.264 Amd.3 (11/2007)
before its publication; further, H.264 Amd.3 was not published separately. This third edition integrates into the H.264
edition published in 2005-11 all changes approved in Amendments 1 (2006-06), 2 (2007-04) and 3 (2007-11).

Sour ce

ITU-T Recommendation H.264 was approved on 22 November 2007 by ITU-T Study Group 16 (2005-2008) under the
ITU-T Recommendation A.8 procedure.

ITU-T Rec. H.264 (11/2007) 1

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

ii ITU-T Rec. H.264 (03/2005)

http://www.itu.int/ITU-T/ipr/

CONTENTS

Page
(01> Vo] o OO OO T TR PRRTRPIO XiX
O I 1 oo [0 Tox (T o ISP P TP RTPR 1
0.1 PrOIOQUE ...ttt bbb £ s b 4ok b £ R b e £ R R £t R e b oA e b e R e R b bt b bRt a e r et 1
L U 0o = TR PR OU R UR PR 1
LG T Ao o] Tor= 14 o] = F TSP URURRRRN 1
0.4 Publication and versions of this SPECITICALIONcoiriiiii e e e 1
0.5 Profill@S AN TEVEIS. ..o bbb r et b e n s 2
0.6 Overview Of the deSIgN CharACLENISHICS....cviiveii it ee et e e e s e e e e s besaeereese e e estesaestestesresseennensesenns 3
0.6.1 PrediCtiVe COMIMNE .. eovieiieeieetiet ettt ettt ettt et e et e b et e e bt eatesaeesaeesaee st eneeenee st enseenseeneenneans 3
0.6.2 Coding of progressive and interlaced VIAOeiuiiuiruiiieieiiere sttt 3
0.6.3 Picture partitioning into macroblocks and smaller partitions.............ccceoererererenieiereee e 3
0.6.4 Spatial redundancy rEAUCTION.c.iccvieieiieiieie ettt ettt ettt e e s e e sbe e e e ste e beesseessessaessaesseesseenseenns 4
0.7 How to read thisS SPECITICALIONceiireeiieiie bbbt b et b bbb 4
o0 o TR U TP PRURURSTN 4
P Lo g Eo YT = = = oSSR 4
G B <. 11 01 (] g TSSOSO PSS UPT PR PR 5
N o] o1 = Y= o]0 OSSPSR 13
B COMVENTIONS. ...ttt b et e bt e b st s e R s e e b e R 8 e R e R s e SRR £ e e R e R e A e e R e R e e e R e Rt ee s b e b e e e R e Rt et r b e e r b 13
Lo A g (0= (o o] o= = L0 OO SOUPESR PR URTRPRP 13
LI W o o= I o] o = =1 (0] £SO PST PR USRTRRR 14
R T B =l To g = M 0] o= = (0] U URRR 14
L 1 T S ol o = = (o] TSRS 14
T XS = o g0 4 = 010 0] 1< = (] OSSP 15
Lo ST 7= e =Y oo = o) o RSO 15
5.7 MathematiCal FUNCHIONS........c.co ettt b et b et st b e b e se e nene s 15
5.8 Variables, syntax elements, and tablES...........ccoiiiiiieiiiece e e 16
5.9 Text description Of 0giCal OPEraliONScccvieiuireeieiesere ettt ere e e sr e besrestesreeneeneeeeneenes 17
510 PrOCESSESc.eetiiieeererreeerese et seese s se e ere s e ese st se e s se e st seeae e Rt s e ese e R e ne e s e e R e e e e s e e R e e e e s e e Rt e e e e e Rt e e e e Rt e e e e n e n e e n e e enen 18
6 Source, coded, decoded and output data for mats, scanning processes, and neighbouring relationships........ 18
B.1 BItSIrEAM TOIMALS. ... c.ieieeiiieseee e b et R bt E e b e R bRt e b e e nen s 18
6.2 Source, decoded, and OULPUL PiCtUrE TOIMALScc.eiuiiuiiicecie e ettt s r e re e e e e 18
6.3 Soatial subdivision of PICIUrES ANA SlICESccueiiieii et re e e enee e 23
6.4 Inverse scanning processes and derivation processes for NeighbOUrS.........ccccvvvvv e 24
6.4.1 Inverse MacroblOCK SCANMING PIOCESScverueruiruieteeiieeieieterieste et eteeteeseeseeeeneestesteetesseeseeseensensensessesseannens 24
6.4.2 Inverse macroblock partition and sub-macroblock partition Scanning Process..........cceeverveerverververeeennes 25
6.4.2.1 Inverse macroblock partition SCANNING PIOCESSeccverreerrrerreerrerrsreresseesseesseessesssessesseesseessesssessseseens 26
6.4.2.2 Inverse sub-macroblock partition SCANNING PrOCESS........c.eeverreereerreerrereereerseerseesessesseesseessesssesssessaens 26
6.4.3 Inverse 4x4 Tuma blOCK SCANNING PIOCESSecvvervierrierieriertertiereterteeteeseesseesseeseessesssessaesseesessessessnesseenes 27
6.4.4 Inverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3cceeeieierienveniieine 27
6.4.5 Inverse 8x8 [uma blOCK SCANNING PIOCESSecvvervierrieierieriestierteeteeteeetesseeteeteessessaessaesseessessessnessnesseenes 27
6.4.6 Inverse 8x8 Cb or Cr block scanning process for ChromaArrayType equal to 3occooiiiiiiiinieneeenne 28
6.4.7 Derivation process of the availability for macroblock addresses...........cceoveeerrieiieiiinieeie e 28
6.4.8 Derivation process for neighbouring macroblock addresses and their availability...........cc.ccooceerieireene 28
6.4.9 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames29
6.4.10 Derivation processes for neighbouring macroblocks, blocks, and partitions..............cccceeerererencncnenne. 29
6.4.10.1 Derivation process for neighbouring macroblocks...........cceoveiieiiriiiiiiiiiieeeee e 30
6.4.10.2 Derivation process for neighbouring 8x8 luma bloCKcceeoieriieciiriiiiiiiertee e 30
6.4.10.3 Derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3 31
6.4.10.4 Derivation process for neighbouring 4x4 1Tuma DlOCKS..........cccvieriieeiiriiiiiiieneee e 31
6.4.10.5 Derivation process for neighbouring 4x4 chroma bloCKS...........ccccveeierierierienieeee e 32
6.4.10.6 Derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3 32
6.4.10.7 Derivation process for neighbouring partitions.............cceeouerierieriere et 32
6.4.11 Derivation process for neighbouring IoCAtIONScceeiirriieierieiieiee e 34
6.4.11.1 Specification for neighbouring locations in fields and non-MBAFF framesccccceevveenienennnen. 34
6.4.11.2 Specification for neighbouring locations in MBAFF framescccccooeeirieiiiiieieiecee e 35
A Y 0] = V= 1o IR = 0 - oSS 37
7.1 Method of specifying syntax in tabular FOrmM ... e e 37
7.2 Soecification of syntax functions, categories, and dESCriPLOrScccvvcvereverie vt 38

ITU-T Rec. H.264 (11/2007) il

TR Vo = 1= o 1 o o o] 39

7.3.1 INAL UIIE SYIEAK. ¢ttt ettt ettt et ettt e et e bt es bt eetesbeesbeesbee bt eateeseeebee bt enteemteenteabeenbeenbeenaesaeesaeenne 39
7.3.2 Raw byte sequence payloads and RBSP trailing bits SyNtaX..........cccceeeveecieeieneeneenieeiesieseesieesieeve e 39
7.3.2.1 Sequence parameter Set RBSP SYNTAX......c.coviiiiiiiiiiiiiiiieiiiesieeeiee sttt et e sae e 39
7.3.2.1.1 Sequence parameter Set data SYNTAXc.cccvereeriieriieriieieeiesieesteesreeteseesreesseesseeseessesseesseessesssenssens 40
7.3.2.1.1.1 Scaling LISt SYNTAX ..ecuveiuieriieiieiieie e etestt ettt eeste s saeesseeaeesbessaesseesseasseenseensesnsesssessaesseenns 41
7.3.2.1.2 Sequence parameter set extension RBSP SYNtaX..........ccccceeieriiiiiiiieiieneeece e 41
7.3.2.2 Picture parameter Set RBSP SYNTAX......c.cccueiiiiiiiriieiii ettt st enne s 42
7.3.2.3 Supplemental enhancement information RBSP SyntaX...........cccecovviiiiiniiiiiiiiecieeeeeeeeee e 43
7.3.2.3.1 Supplemental enhancement information MesSage SYNTAXccverueerueerierrierieniereeeeeie e sieeneeeneens 43
7.3.2.4 Access unit delimiter RBSP SYNtaXcooiiiiiiiiiiiieeeeee et 43
7.3.2.5 End of sequence RBSP SYNEAXccoiiiiiiiieieieieee ettt sttt ese et ae e enens 44
7.3.2.6 End of stream RBSP SYNTAXcc.eiiiuiiiiieieiieeee ettt sttt ettt st ee e eeeeneene 44
7.3.2.7 Filler data RBSP SYNEAX.......ccccoieiiieiiiieiieiieie ettt ete et e et esteeveesseesbeseaessaesseesseesseensesseesseesseensesnsenssens 44
7.3.2.8 Slice layer without partitioning RBSP SYNtaX.........ccccccerviiiierieniieiieiecieseeseesie e eee e seeere v eeneas 44
7.3.2.9 Slice data partition RBSP SYNTAXcccoiiriiiiiiiiiiieiieiteteet ettt sae s saesseesseesseessaenseennens 44
7.3.2.9.1 Slice data partition A RBSP SYNtaX.........cccceviierierieiiieieeiesieieeie ettt sseesse e eneeenne s 44
7.3.2.9.2 Slice data partition B RBSP SYNtaX.......c.ccciriiiiiinieiieieeieeiestee ettt enee s 45
7.3.2.9.3 Slice data partition C RBSP SYNtaAX.......ccccciriiiiierieiieieeieeiestee ettt sae e saee s s eneeennens 45
7.3.2.10 RBSP slice trailing DitS SYMEAXcc.eeiieriiiieiieeiesteeste ettt ettt st eseeesaeeseeeteeneeeneeeseeseeeneeenneas 45
7.3.2.11 RBSP trailing DitS SYNTAX ..c..eertieitieieeiieitiertiesie et erteeeestte st et et es e esee st eesseeteesesneeeneesseesseeseenseeneeenneas 45
733 N O T 16 1) 01 QOSSPSR 46
7.3.3.1 Reference picture list reOrdering SYNEAXccceoieierieriereresereeteeeetete e e seeseesteeseeseeeeneesseseeseeseeeneens 47
7.3.3.2 Prediction Weight table SYNMTAXccueiuiiiiiiieiieeeete ettt ettt se et eeeeneene 48
7.3.3.3 Decoded reference picture marking SYNEAX........ceueoueierieruerereetieieietestee e seeste st eseeeeseeseseeseeseesseens 49
7.3.4 STCE AAA SYNEAX ..evveivieiiieiieiieieeteste et ebeeteetesteesseesseessesseesseesseesseesseesseassesssessaessesssesssesssesssesseensennsenssens 50
7.3.5 MACTODIOCK JaYET SYNEAX....cuiiiiieiiiiieeiesiieiteett et e st et et ebeeeeseeseeesaeesseesseesseeseesseesseesseessessseessesssesseenns 51
7.3.5.1 Macroblock prediCtion SYNTAX.......c..ccveieerieriieeeeeesteesteeteereeseesteesseessesssesssesseesseesseessesssesseesseessesssenssens 52
7.3.5.2 Sub-macroblock prediction SYNEAX..........cccveruieriieiierieriesieeteeteeteseeseesesaeseesseesseeseessesssesseensesnseensens 53
7.3.5.3 ResidUal data SYNEAXccecieeiieiieiieieeie ettt et e st et et et e et et e e b e et e etesnaeenaesseense e st enseenseennens 54
7.3.5.3.1 ReSidual TUMA SYNTAX ...ocuvieeieiiiiieieeieeie et ettt et et et eesbessaessaesseesseenseensesnsesseenseenseensennsens 55
7.3.5.3.2 Residual bIock CAVLC SYNAX ...couieiiriiiiiieieesie et eeeeetie sttt ete et ee st e e eessteseeeseeeteeneeeneesneenseens 56
7.3.5.3.3 Residual block CABAQC SYNEAX.......cecieiiiieriietieiteeeetee st et et eteestesseeseeeseeestesneesseeseeenseeneeeneenseens 57

AT S < 110 | U] oSSR 58
7.4.1 INAL UNIE SEIMANTICS «..centientieiieeiteeiie sttt ettt ettt et et ee e ettesbte bt e bt e bt eatesbee st e e bt enteesteebeenbeenbeenseenaesaeesneenne 58
7.4.1.1 Encapsulation of an SODB within an RBSP (informative)cccoeeevieviiiviiiieiieseere e 61
7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences.................. 61
7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation............cccoeeveveeienreennen. 61
7.4.1.2.2 Order of access units and association to coded video SEqQUENCESceevvverviererierierreereeieneeenens 62
7.4.1.2.3 Order of NAL units and coded pictures and association to acCess UNItScccvevveeverevenieereeennnns 63
7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picturecceeeeervereerireceenienieeieennnns 65
7.4.1.2.5 Order of VCL NAL units and association to coded pictures............cceecveruverirererieseenieeieseeseeeneens 65
7.4.2 Raw byte sequence payloads and RBSP trailing bits SEManticsccceevverieriererreeienie e 66
7.4.2.1 Sequence parameter set RBSP SEMANTICSccoieiiiiiiiieiieiieieeieee e 66
7.4.2.1.1 Sequence parameter Set data SEMANTICSecuteruieriieieetiertieteeie et eestee st e e eeeseee st eteeteeneeseeens 66
7A42.1.1.1 Scaling LISt SEIMANTICSccuertirueriietieieeieiet ettt ettt ettt et et e e stesbeebeeseeseeneensensaseseesseeseeneenes 72
7.4.2.1.2 Sequence parameter set extension RBSP SEManticsccceevvierieeniienieeniienieeie e 72
7.4.2.2 Picture parameter Set RBSP SEMANTICSceecuiiiiiieriieiiieeiie sttt te et e et sbe e veesebeesaeessbeessneenens 74
7.4.2.3 Supplemental enhancement information RBSP SeManticsccceeeriereiiiierieeneenieeeeeeeseesveeieennens 77
7.4.2.3.1 Supplemental enhancement information message SEMANtICS.........cceerveevrreereereerreerreereneeseeennens 77
7424 Access unit delimiter RBSP SEMANTICScc.eeeiieiiriiiiieiisiesieeieeteerte ettt 77
7.4.2.5 End of sequence RBSP SECMANtICS........ceevuieiiiiiiieieeiieiieit et see et ete s see st esseesesneesneesseenseenneensens 77
7.4.2.6 End of stream RBSP SEMAaNtICS.........cc.eeiiiiiiiiiiiiniiienceescecctet ettt et st 77
7.4.2.7 Filler data RBSP SEIMANTICS......c.eeitieitiiiieieiie ettt ettt ettt st seee st e aeeeeeneeeneesaeeneeeneeeneeas 77
7.4.2.8 Slice layer without partitioning RBSP SEMAanticsccceouerieiieiieieiieie e 77
7.4.2.9 Slice data partition RBSP SEMANTICScccueruieiieriieiiieie ettt e e 78
7.4.2.9.1 Slice data partition A RBSP SEMANTICSc.eeevieeiuiierieeiiieeiieeiieeseeeieeeieeereeeveesreesaeesereesnseesnsees 78
7.4.2.9.2 Slice data partition B RBSP SEMaNtiCs.........ccvvuerruiierieeiiiieiieeiie e cieeeieesreeeveesreesaeesereesveesnsees 78
7.4.2.9.3 Slice data partition C RBSP SEMaNtICS......c.ceevvueriuiierieeiiiieiieeieeeieeeieeeieeereeesaeesreesaeessseessseesssees 78
7.4.2.10 RBSP slice trailing DitS SEMANTICS.........ccvieruirriieieriesiieieeteeeeseesteeseesesaesseesseesseessesseesseesseessesssenssens 79
7.4.2.11 RBSP trailing bitS SEMANTICScc.eevvierrirriirieiierieestiesteeteettesteesteesseessesssesssesseesseesseessesseesssesseessesssenssens 79
743 STCE NEAAET SEIMANTICSevteuienienieitieteeteet ettt ettt b e bt bttt e st et s b sbeebe et enbe e entesbesbeeneene 79
7.4.3.1 Reference picture list reordering SEMANTICSc.eeveeruierirerierieniesieeteetesteseeseeesseeseeseeeseesseesseensennsens 85

iv ITU-T Rec. H.264 (03/2005)

8

7.4.3.2 Prediction weight table SEMANTICSccueiuiiiiiiiietieieiee ettt ettt ese et e st e eneene 86
7.4.3.3 Decoded reference picture marking SEMANTICS.c.eeuerueeuieieieieriesieste ettt ettt ee e seeseesee e eneeneens 86
744 STCE AL SEIMANTICSeuveuieiienieieie ettt sttt ettt st sb e s bt bt e st et e e se e et e sbesbeebe e st enbe st enbesbesaeeneens 89
7.4.5 MacCToOblOCK 1aYET SEIMANTICSccvievieeiieeieiieitieiteeteeteste st e st eteeteeaeeseesseesseesseessesssesssesseesseessesssesssesseens 90
7.4.5.1 Macroblock prediCtion SEMANTICSccvervieriierieeiereeseeteeteeeeetesteesseeseesesseesseesseesseesseassesssessesssenssens 97
7.4.5.2 Sub-macroblock prediction SEMANTICSc.eecvierierierieriieieeteeteseeste et etesaestesseenseeneeeseesseenseesennsens 97
7.4.5.3 Residual data SEMANTICScc.eovivuerueriieiiieierirtere ettt ettt et sttt et ae e enes 100
7.4.53.1 Residual luma data SEMANTICScc.coiririririiieieienene ettt ettt sttt et see e 100
7.4.5.3.2 Residual block CAVLC SEMANLICS......cccueeruirieriierieeieeie et etteetee et eteseeseeeseeeeeeeesneesneeseeeneeenes 101
7.4.5.3.3 Residual block CABAC SEMANTICSceoueeuerieriieiieiieie e etiestee st ettt seeeseeeseeeee e eneeeneeseeenseenes 101
D= oo o [F T I] Tt TSRS 102

8.1 NAL UNIt AECOMING PrOCESS. ... eiteitirterueeteeieeieeteseeste st eueeeeseesbe et sbesaeebesae e e aeeseeabesaesaeeaeensanbeseenbeseesbesaesneeneeneaneas 103

SIS TToc X0 (= oo o] 0o [o) o 00 ST SO 104
8.2.1 Decoding process for picture OTder COUNT..........c.ieouieiirierieiieie ettt ee ettt e see e enee st et eeeeneesneens 104
8.2.1.1 Decoding process for picture order count type 0ccceereereeririeeieriereere et 105
8.2.1.2 Decoding process for picture order count tyPe 1c.eoeeiieiieiiiieie et 106
8.2.1.3 Decoding process for picture order COUNt tYPE 2cceeieieriirieieeiieiieieieeeie ettt see e see e 107
8.2.2 Decoding process for macroblock to SIiCE SrOUP MAPcoueeueruieierierieiereeieeeeeeeee e 108
8.2.2.1 Specification for interleaved slice roup mMap tYPe.......ccveeeeeruererereeieieeieie e et 109
8.2.2.2 Specification for dispersed SliCe roup Map tYPEC.......ccvereerrieriieiieierierriesteeteeeeseeseesseeseseeseeesseennas 109
8.2.2.3 Specification for foreground with left-over slice group map typeccoeevevcierierieneerieeieeieseeseennns 109
8.2.2.4 Specification for box-out SIICE SrOUP MAP LYPES...cverrirrerrerierriertieteereetesreesseeseeseesresseesseesseesesses 110
8.2.2.5 Specification for raster scan slice roup mMap tYPESccuerreerrierieeruerieriereesreseeseesseesseeseseesseenseesens 110
8.2.2.6 Specification for wipe SliCE ZrouUP MAP LYPES ..eervrererierieiieriertierieeee e seesteeeeeteesessaesseesseeseesesnnes 111
8.2.2.7 Specification for explicit SIice Sroup MAP tYPC.....ecveererceerierieriierieeie et eeeeteneeebe e eresaeseeesseesseeneas 111
8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map 111
823 Decoding process for slice data partitioning...........cceceeuerieriereereeie ettt eee e et e e seeens 111
8.24 Decoding process for reference picture listS CONStIUCHION.ceueeueeruieriieiieie sttt 112
8.2.4.1 Decoding process fOr PICtUIE NUIMDETS.ceuteuieieierietirterteeteeteetteteteeesteste et eteeseeneeseeneesesseseessesneas 112
8.2.4.2 Initialisation process for reference PiCture liStS.........ccvureriieiiieiieiiieeiee et 113
8.2.4.2.1 [Initialisation process for the reference picture list for P and SP slices in frames..........c..cc.c........ 114
8.2.4.2.2 Initialisation process for the reference picture list for P and SP slices in fields............ccccveneeeee. 114
8.2.4.2.3 Initialisation process for reference picture lists for B slices in frames........c..coccecevveeeeiienicnenenne. 115
8.2.4.2.4 Initialisation process for reference picture lists for B slices in fields........c.ccoceveverieniciiincnennnn 115
8.2.4.2.5 Initialisation process for reference picture lists in fields........cccceoevenininiinininininiiciccnee 116
8.2.4.3 Reordering process for reference picture liStS.........c.ecierieriiercierierieii e 116
8.2.4.3.1 Reordering process of reference picture lists for short-term reference pictures.............cccceenue..e. 117
8.2.4.3.2 Reordering process of reference picture lists for long-term reference pictures...........cccceeueeneene. 118
8.2.5 Decoded reference picture marking ProCeSSceouerieruierieriieieeiestee sttt ettt ettt see et enee e eneens 118
8.2.5.1 Sequence of operations for decoded reference picture marking process..........ccceeeevveruereeneeneenenne. 119
8.2.5.2 Decoding process for gaps in frame NUIM.........ceoeeieiiiiiiieiieieceeeieee ettt eaeas 119
8.2.5.3 Sliding window decoded reference picture marking proCess...........cceeerereeeeriesiereeneneseseeseeeeeeeneas 120
8.2.54 Adaptive memory control decoded reference picture marking proCesscceeeverveerreerreereeseeseennens 120
8.2.5.4.1 Marking process of a short-term reference picture as “unused for reference”cccecevennnne. 120
8.2.5.4.2 Marking process of a long-term reference picture as “unused for reference”...........cccccvvvvenene. 121
8.2.5.4.3 Assignment process of a LongTermFrameldx to a short-term reference picture......................... 121
8.2.5.4.4 Decoding process for MaxLongTermFrameldX..........ccceevevuieiiiiiienienieiieieeeeeeee e 121

8.2.5.4.4.1 Marking process of all reference pictures as “unused for reference” and setting

MaxLongTermFrameldx to “no long-term frame indiCes”..........cccveoerieiieiiiniee e 121
8.2.5.4.5 Process for assigning a long-term frame index to the current pictureccoeceeveeierenieneenne. 122

LG TN 1 = o) = [ox 0] 002 P 122
8.3.1 Intra_4x4 prediction process for luma SAMPLEScceriiiiiiiiiiieieee e 123
8.3.1.1 Derivation process for the Intradx4PredMOde..........ccveeiiiiiiieniiiiicieceeeeee et 123
8.3.1.2 Intra 4x4 SAmMPIE PrEAIiCIONeevieeiieiieriietieie e ste st et et e te et esteesteesbeesbeesaessaessaesseessesssessnesseessenseas 125
8.3.1.2.1 Specification of Intra_4x4 Vertical prediction MOdecceevvreierieriieciieieeieseesie e 126
8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction Modecccvevveeiieiinienieiieieeie e 126
8.3.1.2.3 Specification of Intra_4x4 DC prediction MOAEccverveeiieriierieniieiieie et 126
8.3.1.2.4 Specification of Intra_4x4 Diagonal Down_Left prediction modecceecvevverirciercienrenne, 127
8.3.1.2.5 Specification of Intra_4x4 Diagonal Down_Right prediction mode.........c..cccovevevrevirrcrenrennnnne. 127
8.3.1.2.6 Specification of Intra_4x4 Vertical Right prediction modecccceeviriiniiiniiiiniiiieee, 127
8.3.1.2.7 Specification of Intra_4x4 Horizontal Down prediction modececceveeerienieneeieniereeee 128
8.3.1.2.8 Specification of Intra_4x4 Vertical Left prediction mode...........cccoeviriiriiniiniieiieeeeeeeee, 128
8.3.1.2.9 Specification of Intra_4x4 Horizontal Up prediction modeccceeereeieieiesienieneie e 128

ITU-T Rec. H.264 (11/2007) v

8.3.2 Intra_8x8 prediction process for luma SAMPLESccueiiiiiiiiiiiieeee e 129

8.3.2.1 Derivation process for Intra8X8PredMOdE.........c.eevuieiieiiiiiiieceecie ettt 129
8.3.2.2 Intra 8X8 SAMPIE PrEAICION ...c.vieevieeiieiieiieiieie e cte ettt ettt e ste e te et e e b e esbessaesseeseessesssessnesseessesneas 131
8.3.2.2.1 Reference sample filtering process for Intra_8x8 sample predictionccoecveevveriereerreneennen. 132
8.3.2.2.2 Specification of Intra_8x8 Vertical prediction MOdeccveevvirierieriieciieieeieseeie e 133
8.3.2.2.3 Specification of Intra_8x8 Horizontal prediction Mmode...........ccceveerieriiecienienieeeie e 133
8.3.2.2.4 Specification of Intra_8x8 DC prediction MOAEcceerveriieriierienieie e 133
8.3.2.2.5 Specification of Intra_8x8 Diagonal Down_Left prediction modeccoeceevveviecierrenrennne, 134
8.3.2.2.6 Specification of Intra_8x8 Diagonal Down_Right prediction mode.............cceveeririirrncnnncne. 134
8.3.2.2.7 Specification of Intra_8x8 Vertical Right prediction modeccccceeviriiiiiniiiiiiiieeee, 135
8.3.2.2.8 Specification of Intra_8x8 Horizontal Down prediction modecceccevverienienieierieseeee 135
8.3.2.2.9 Specification of Intra_8x8 Vertical Left prediction mode............cccooeeriinieniiniiiiniiiiiiieneene, 135
8.3.2.2.10 Specification of Intra_8x8 Horizontal Up prediction modeccceecerieieieneniencicienceee 136
833 Intra_16x16 prediction process for Iuma SAMPIES........cc.ecveriieriieiiiiiiiiiereee ettt 136
8.3.3.1 Specification of Intra_16x16_Vertical prediction MOde...........c.ccvvevrieciiriinieiieniieie e 137
8.3.3.2 Specification of Intra_16x16_Horizontal prediction Mmode...........ccecvveeiirierienienieieeie e 137
8.3.3.3 Specification of Intra_16x16_DC prediction MOAEceeeieruieriiesiieieeiienieieeie e 137
8.3.3.4 Specification of Intra_16x16_Plane prediction MoOde...........ceecverierierienieie et 138
834 Intra prediction process for chroma SAMPIESc..cceeeierieriieiieeieeiereee et eeeens 138
8.3.4.1 Specification of Intra_Chroma DC prediction MOdecceeeerieiieiiieiiiiieieseeeee e 140
8.3.4.2 Specification of Intra_Chroma_ Horizontal prediction mode.............ccccevoiriiiieniiniir e 141
8.3.4.3 Specification of Intra_Chroma_Vertical prediction MOdeccceeveeriirienieneiieeiereee e 141
8.3.4.4 Specification of Intra_Chroma_Plane prediction Mmodeccoeoueriiieririninenieceeie e 142
8.3.4.5 Intra prediction for chroma samples with ChromaArrayType equal to 3ccooceiiiieiiieiieeeeee 142
8.3.5 Sample construction process for | PCM macroblockscceviririiinieiieieree e 143
8.4 INLEr PrediCliON PrOCESS. ...cveueetirteueete sttt ettt st se et b e e it b e se e st s b e seebe s b e seeb e e b e seebesbeneeb e s b e neebeebeseebenbe e ebesreneerens 143

8.4.1 Derivation process for motion vector components and reference indices............ccevvververreecieeiesveneennns 146
8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices.................. 147
8.4.1.2 Derivation process for luma motion vectors for B_Skip, B Direct 16x16, and B Direct 8x8......... 147
8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitionsccceceevvevereciereennnnne. 148

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode . 151
8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode

152
8.4.1.3 Derivation process for luma motion vector PrediCtion..........c.vecveeveriereerieerreeie e ere e e sveesreesneas 155
8.4.1.3.1 Derivation process for median luma motion vector predictioncceeeeevreevreecieneeseesreeeeenns. 156
8.4.1.3.2 Derivation process for motion data of neighbouring partitions.............c.ccecereeeierieiesieneseseeene. 157
8.4.1.4 Derivation process for chroma motioN VECOTSc.coveruieriieieriesiiesieesieeeeseeseesseeseesesseesseesseessens 158
8.4.2 Decoding process for Inter prediction SAMPIESc.eecvieiieierieriieiieieeieseeseesieereeeeereesseesseesseessesseens 158
8.4.2.1 Reference picture SEIECION PIOCESScccverrieriieriiereerreriiesteesieesseesesstesseesseesseesseessesssesseesseessesssesssessees 159
8.4.2.2 Fractional sample interpolation PrOCESS.cccvertierreerreriteriertesieesteeteereeeesseesseeseesessessnesseesseensesnnes 160
8.4.2.2.1 Luma sample interpolation PrOCESS..........ccerruerierieerrerierieseesteeseeeeeeseesseesseesessaesseesseessessesssesees 162
8.4.2.2.2 Chroma sample interpolation PrOCESSc.eeverreerierrierierierteerteeeeeeesseeseeeseesaessaesseenseesesssessnenses 164
8.4.2.3 Weighted sample prediCtion PrOCESS.cuieuireerierteerteete e see st e st ettt et eetee et eteeteenaeeneesseesseeneeeneas 165
8.4.2.3.1 Default weighted sample prediction PrOCESS........cverieriieiieierierieerieete ettt ee e enee e e 166
8.4.2.3.2 Weighted sample prediCtion PIrOCESSc.veruieuirieriertierieeteeteseeetee st et eeeaeeseeesteeteenseeneesneenees 166
8.4.3 Derivation process for prediction WeIZhtScooeiiiiiiiiiiieiieeeeeee e 167
8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter process. 169
8.5.1 Specification of transform decoding process for 4x4 luma residual blocks..........ccccoviiiiiiiiincninnn. 169
8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode 170
8.5.3 Specification of transform decoding process for 8x8 luma residual blocks..........ccceeivviivierieniieniinnenns 171
8.54 Specification of transform decoding process for chroma samples............cccoecereiercierienienieeeieeeeee, 171
8.5.5 Specification of transform decoding process for chroma samples with ChromaArrayType equal to 3..173
8.5.6 Inverse scanning process for transform cOeffiCIeNtSceveruierieiiriiieeeeee e 174
8.5.7 Inverse scanning process for 8x8 transform coefficientscocoeeveeiieiirii i 174
8.5.8 Derivation process for the chroma quantisation parameters and scaling function..............ccccceecveenneens 176
8.5.9 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type... 178
8.5.10 Scaling and transformation process for chroma DC transform coefficientsccccceceeveeiiieninenenaene 179
8.5.10.1 Transformation process for chroma DC transform coefficients..........c.ccccoevvevieviieviinciencienieeeeeen, 179
8.5.10.2 Scaling process for chroma DC transform coefficients............ccoocvevvieviieciieienieniiecececeeseee e 179
8.5.11 Scaling and transformation process for residual 4x4 DIOCKS........ccceevvivciiiiirieniieiicieeeeeee e 180
8.5.11.1 Scaling process for residual 4X4 DIOCKScoieriieiiiieiierieeie ettt ste e eesessaesnnes 181
8.5.11.2 Transformation process for residual 4X4 DIOCKSc..ccveruieriieiiirienierieeee et 182

vi ITU-T Rec. H.264 (03/2005)

8.5.12 Scaling and transformation process for residual 8X8 bIOCKS.........ccevireririiieieieeeeeeeee e 183

8.5.12.1 Scaling process for residual 8X8 BlOCKScc.cevuiiiiiiiiiiiieie e 183
8.5.12.2 Transformation process for residual 8X8 DIOCKSccueruieriieiiiriiiieiieeeie et 184
8.5.13 Picture construction process prior to deblocking filter Processeevveververeeriieciisierieieere e 187
8.5.14 Intra residual transform-bypass deCOdINg PrOCESScevviervirieiieriienrieieete et e eteesteebeereseresree e eseesseennas 188
8.6 Decoding processfor P macroblocksin SP glices or S macroblOcKs..........coeeeeieienine e 189
8.6.1 SP decoding process for NOn-switChing PICTUIESc.cccveruieriieiieeiirieieieeie et 189
8.6.1.1 Luma transform coefficient deCOAING PIOCESSc.eeverreruieriierieeiieeierieseete e eee e stee e eseensesenesneas 189
8.6.1.2 Chroma transform coefficient decOding PrOCESS.......couerueruierierierieeie ettt 190
8.6.2 SP and SI slice decoding process for SWitching PICtUIEScecieriieriieierierieieee et 192
8.6.2.1 Luma transform coefficient deCOdING PIOCESSccueeueruieruieriieriieie ettt 192
8.6.2.2 Chroma transform coefficient decoOding ProCESS.......coueruerierierieriieiieieeteteee et 192
8.7 DEDIOCKING filLEr PrOCESS......eeieieieiseie et ceere et e e et e e e e eteseesbesaeereeseeseeneeseenteseeseenseaneeneeneenen 193
8.7.1 Filtering process for BIOCK ©AZESiiuiiiiriiiiiiiieiiectet ettt ettt be et e s e saeesaeesbeesseesaenseens 197
8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge...........ccoeevveverrerreennn. 199
8.7.2.1 Derivation process for the luma content dependent boundary filtering strengthc.ccceevvvennnen. 200
8.7.2.2 Derivation process for the thresholds for each block edgecceevveeiirieiiienienieec e 201
8.7.2.3 Filtering process for edges with bS 1ess than 4cccovieiieiiiii e 202
8.7.2.4 Filtering process for edges for bS equal t0 4.........ccveriiriiiiieiieiee s 204
O PAISING PIOCESS......cutiirerereieteteieesies et st s et b e b s et st st s s s e b s b e e e e s e e e e s e s R R bbb et et e e e e e R bbb et 205
9.1 Parsing process for EXP-GOlOMD COOBS.........coiriiririiinierieisie ettt et sb e s sb e be bbb neene 205
9.1.1 Mapping process for signed EXp-Golomb COAESc.covverviiriiiiiiiiiieiieieeie et 207
9.1.2 Mapping process for coded DLOCK Patternc.oecvirierierieiieie et 207
9.2 CAVLC parsing process for transform coeffiCient [@VEIS...........oooiiriiiii e 210
9.2.1 Parsing process for total number of transform coefficient levels and trailing onescc.ccccccveveruennene 210
9.2.2 Parsing process for level informationooiiiieiieii it 213
9.2.2.1 Parsing process for 1eVel PrefiX........coooi oot 214
9.23 Parsing process for run information............coooeiiiiiiiieii e 215
924 Combining level and run iNfOrmationcooceeieieieieee et 218
9.3 CABAC parsing proCess fOr SlICE TALAccvreirrieieeeeeeere s et e e et ere e e e eeesresreeneeneeneenen 218
9.3.1 INItIALISAtION PIOCESS ...vvivierierietieeieiteitteiteesteeteesteeteesteesseesseesseessesssesssesseesseessesssesssesseeseesseensesssesssesseans 219
9.3.1.1 Initialisation process for CONtEXt VAIIADIES.........ccvirverieriieiieieiie ettt eeeesbeesseesseennas 220
9.3.1.2 Initialisation process for the arithmetic decoding engine...........cccceueveerierieriieriieienieneee e 242
9.3.2 BiNATIZAtION PIOCESS . ..e.vvevietietieeieetiestteteeteetestesseesseasesseesseasseesseassesssesssesseesesnsesnsesssesseesseensenssesssenseens 242
9.3.2.1 Unary (U) DINATIZAtION PIOCESSuveruvererersieriereeeeaerenseesseessessesssesseesseesseassesssesseesseessesssessesseessesssesses 245
9.3.2.2 Truncated unary (TU) DINAriZation PrOCESScc.eecverrerreerreerreerereesseesseesseesessaesseesseessesnsessesssesseenses 246
9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGK) binarization processc.cceeeveeeeruereereene. 246
9.3.2.4 Fixed-length (FL) DINAriZation PIOCESSc.ceeteerteerueeeeriiertierteeneeeeeeueesseenteeteeneesseesseesseenseansesneesaeenees 247
9.3.2.5 Binarization process for macroblock type and sub-macroblock typeccceeeevieiieieerienienieeee. 247
9.3.2.6 Binarization process for coded bloCK Pattern..........c.ccvevvieiiieiiiiiiiieceee e 250
9.3.2.7 Binarization process for mb_qp deltacocoiiiiiiiiii s 250
933 Decoding PIrOCESS TlOWeiiuiiiiiiieiieee ettt st sttt ettt et sbe et et eeeenbeens 250
9.3.3.1 Derivation process for CtXIAX......ccciiriiiiiiiiieriiiieieeieeeee ettt ste et et e e ste b e eebeesaesseesseeseessesneas 251
9.3.3.1.1 Assignment process of ctxIdxInc using neighbouring syntax elements..............cccocvevvreverrrennenne. 253
9.3.3.1.1.1 Derivation process of ctxIdxInc for the syntax element mb_skip flag........c...ccoevevvrrrennennn. 253
9.3.3.1.1.2 Derivation process of ctxIdxInc for the syntax element mb _field decoding flag................ 253
9.3.3.1.1.3 Derivation process of ctxIdxInc for the syntax element mb_type........ccccccevverirverrceeneennnnne. 254
9.3.3.1.1.4 Derivation process of ctxIdxInc for the syntax element coded block pattern...................... 254
9.3.3.1.1.5 Derivation process of ctxIdxInc for the syntax element mb_qp delta............ccocereerienne 255
9.3.3.1.1.6 Derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx II............. 255
9.3.3.1.1.7 Derivation process of ctxIdxInc for the syntax elements mvd 10 and mvd 11 256
9.3.3.1.1.8 Derivation process of ctxIdxInc for the syntax element intra_chroma pred mode.............. 257
9.3.3.1.1.9 Derivation process of ctxIdxInc for the syntax element coded block flagcccee.e. 258
9.3.3.1.1.10 Derivation process of ctxldxInc for the syntax element transform_size 8x8 flag............. 261
9.3.3.1.2 Assignment process of ctxIdxInc using prior decoded bin valuescceceveverienienieeieniennenn, 261
9.3.3.1.3 Assignment process of ctxIdxInc for syntax elements significant coeff flag,
last_significant coeff flag, and coeff abs level minuslc.cccoocieiiiiiiriiiniienieeee e 261
9.3.3.2 ArithmetiC dCCOING PIOCESS.eervieeietieieetieriieieeteeteetesseesseeeeseesseesseenseansesssesseeseensesnsesseesseensesnnes 264
9.3.3.2.1 Arithmetic decoding process for a binary deCiSIONceecverierieriieiieeie e 265
9.3.3.2.1.1 State tranSitioN PIrOCESSueeueruiertietieteeteettesteerteeteeeesneesaeessteneeeneeeseesseenseeseennesneesneesseenseenes 266
9.3.3.2.2 Renormalization process in the arithmetic decoding engine............coceevvervecenienieseeseeeeeeene 268
9.3.3.2.3 Bypass decoding process for binary deCiSIONSceecveruieruieriieniieieeieeie st 269
9.3.3.2.4 Decoding process for binary decisions before terminationccccceceeeereerienceniennienceneenenn 269

ITU-T Rec. H.264 (11/2007) vii

9.34 Arithmetic encoding process (INfOrMAatIVE)eeiiieieriiriie sttt 270

9.3.4.1 [Initialisation process for the arithmetic encoding engine (informative)ccccceceeveevencenencencnnnn. 270
9.3.4.2 Encoding process for a binary decision (infOrmative)cecvvereeriereieiiienienieesieeireeeeeeeseeesreeseennas 270
9.3.4.3 Renormalization process in the arithmetic encoding engine (informative)...........cccceevvveevereeereennenen. 271
9.3.4.4 Bypass encoding process for binary decisions (informative)...........cceevveeevieieneeniiecienieseeseereene e 273
9.3.4.5 Encoding process for a binary decision before termination (informative)............cceceevververercvernenne. 273
9.3.4.6 Byte stuffing process (INfOIrMAtiVE)ecuieriirierieriietieteetestesee e eee et e eee st eteeeeseseseaesseeseensesnnes 274
ANNEX A Profil@Sand [EVEIS.........oouiee ettt st et b e bt e e b e e b nre e ere e 276
Al Requirements on video decoder Capabilityccciireirireiirinieree e 276
A2 PIOFIIES .ttt bbb h b bR bR R R e R R R R e bRt R et R e e nns 276
A2l BaSEIINe PIOTIIE ..cuviieiiiiiiieit ettt ettt ettt et e st e et e esbe st e sreesaaesseenteesbeesaenreens 276
A22 IMAAIN PLOTILE ...ttt sttt ettt e et et e e e e st e essessaessee s e enseensesnsesseenseenseensennsenseens 277
A23 EXtENA@A PIOTILC. . .eeieiieiieit ettt ettt ettt ettt e e e eteesae s st e se e st enseeneenseenseenseennenreens 277
YN & § T4 1 1503 (o) i) (SR S 277
A25 High 10 PIOTILE. ...ttt ettt ettt et e bt e bt et e st e saeesaeenteeteeneeeneenneens 278
A2.6 HIgh 4:2:2 PIOTIC. .. .ottt ettt ettt e s bttt ettt et e et eaeeneeenes 278
A2.7 High 4:4:4 Predictive PrOFIlEoc.oii ittt s b et eee e 279
A28 High 10 INtra PrOfile ...oo.eiiiie ettt ettt ettt be et ene et e s et eseebeseeeees 279
A2.9 High 4:2:2 TN PrOFILE ...oueeeiiee ettt ettt ettt sttt b e e bt e st et e e e e e beeeeeees 280
A2.10 High 4:4:4 TNtra Profilecccviiieeiieiieiieieeieeeete ettt et s et e e e s e esbessaesseesseessesssessnesseenseenss 280
A2.11 CAVLC 4:4:4 INtra Profile.....cccuieriieiieiieiesiieie ettt ettt ste e teebeesbeessessaesse e seensesssessnesseenseenns 281
G S I = PSR 281
A3l Level limits common to the Baseline, Main, and Extended profiles............cccoccevvienienienieciniiieieeene 281
A32 Level limits common to the High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profilesccccecevveeviineniiniininienineneeceeeene e 283
A33 Profile-specific 18VEl IIMILSeeuieiiieieiieie ettt ettt s sae ettt eneeeneenneens 284
A.3.3.1 Baseline profile 1eVel IMItS.........cooeiiiriiriiiieiee ettt 286
A.3.3.2 Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, and CAVLC 4:4:4 Intra profile level lIMItscoccoviiiiiiiiiieeeeee e 286
A.3.3.3 Extended Profile level IIMILScooiiiiiiiiiiiieee ettt 287
A3.4 Effect of level limits on frame rate (INfOrmMative)ccceevieriieiiieiieiiciece et 288
ANNEX B BYLE SIFEAM FOMMIEALveeiieitireeete ettt bbbt b e bbb e b e s b e e et st e e et e sbeeenens 291
B.1 Bytestream NAL unit SyntaxX and SEMANTICS.......ccuciueieririire e sreseeee e ettt a e e se e besaesresneeaeesaeneeneees 291
B.1.1 Byte stream NAL UNIE SYIEAX ...coouiiiiiieiieriete ettt ettt s te bt e bt ettt e sbeesbeeteeseesneenbeens 291
B.1.2 Byte stream NAL UNit SEMANTICSeeeuiertiiriiiieiieitientterte ettt ettt sttt ee st e bt e te st e sbeesbeenteeseeeneenbeens 291
B.2 Bytestream NAL unit deCOOING PrOCESS........ceiiruerieeierierisiesteste st eseeeeseestesee e saeereseessesseseesteseesressesseeseenesnsenes 291
B.3 Decoder byte-alignment recovery (INfOrMatIVE)cccoireeririeirieesieeee e bbb 292
Annex C Hypothetical refer ence deCOErooiuiiiiiiiiiiii s 293
C.1 Operation of coded picture bUFfEr (CPB)c..ociiiiicieece et sttt s sre st e ena e eneas 295
C.1.1 Timing of DItStream arTiValccoiuiiiiiiii ettt ettt see e 295
C.12 Timing of coded PICTUIE TEMOVAL.......cc.iiiiiiiiieieee ettt se e sbe e 296
C.2 Operation of the decoded picture bUffer (DPB)........cccoerererieiiseieceeeeseese st se e e sre e e eseeeenes 297
C.2.1 Decoding of gaps in frame num and storage of "non-existing" frames...........cccoccevvevrieviinienieriieciennnns 297
C22 Picture decoding and OULPUL.........c..ccuivueiiiiieiieeie ettt ettt steebeebesaesteesaeeseesseessesseesseesseessenseens 297
C23 Removal of pictures from the DPB before possible insertion of the current pictureccceevvevennenn. 298
C24 Current decoded picture marking and SLOTAZEevveerveerieriierierierieeie e eee st ettt eeeeeeessee e eseeeeaesenens 298
C.2.4.1 Marking and storage of a reference decoded picture into the DPBcccocoovinininiiiiiiinincncnee, 298
C.2.4.2 Storage of a non-reference picture into the DPB..........cccooiiiiiiiiiienie e 299
C.3 BitSIream CONTONMENCE.c.ciieitieieteere ettt s et b bt e bt e b bt s e b e b e e e bt sr b e e e ne s 299
C.4 DECOUEN COMPOIMBNCE. ... e.eveuirereresesseseessesesesee st ssesesessesesessesesesseseaesbeb e e s s ebeRe s b e b et s e e b e Re s b e b et se e b e e s b eb et nse b e e nrenenis 300
C4.1 Operation of the output order DPBcoooiiiiii et 301
C4.2 Decoding of gaps in frame num and storage of "non-existing" PiCtures..........oceveeeereerierienienenenennenne 301
C43 PICtUIE AECOMINGeeeeienieeie ettt s ae et ae st e et et e seeebe s bt eaeeneeneeneeneensenseseeeneeee 301
C44 Removal of pictures from the DPB before possible insertion of the current pictureccceeveevennns 302
C4.5 Current decoded picture marking and STOTAZEccveerveeiiriierieiierieeie e eee e eteereeeeereesreesseesseessesseens 302
C.4.5.1 Storage and marking of a reference decoded picture into the DPBc.cccoevvivieiieciinieiieieeee, 302
C.4.5.2 Storage and marking of a non-reference decoded picture into the DPB...........cccccoevieiiinienienireieeen. 303
C4.5.3 "BUIMPING" PIOCESS ..uvieuveeeretierieteetestesstesstesseassesseesseeseeseansesssesseesseesseanseessesssenseensesssesssessesssesnsesses 303
Annex D Supplemental enhancement iNfOrMationccoooiiiiiiiienee e e 305
D.1 SEI PAYIOAA SYNEAXeveeineetirieieiest ettt bbbt b bbbt b e et b et e st b et b et s 305
D.1.1 Buffering period SEI MESSAZE SYNTAXvevuieriiieieiieriieriiereeteeeesteeseesesseseesseessesssesssesseessesssesssesssesseens 307
D.1.2 Picture timing SEI MESSAZE SYNTAXeevvieriirireiieiiesiiesteeteetesseesseeseesesssessaesseesseessesssesseesseessesssesssesseens 307

viii ITU-T Rec. H.264 (03/2005)

D.1.3 Pan-scan rectangle SEI MEeSSAZE SYNTAK . ..cc..eiuiiiiriiriieiieieeiiesteenie ettt st et ettt seeesbeesbe et eseesaeenaeens 308
D.1.4 Filler payload SEI MESSAZE SYNTAXccueeuiruiruieiieieietesteete st etteieeseete e testeete bt eaeeseeneensenseseeseseeebeseeseeanes 308
D.1.5 User data registered by ITU-T Rec. T.35 SEI MESSAZE SYNTAX ...cvievirvereieriierieeieereeeeeseeesieeseesseesneneeens 309
D.1.6 User data unregistered SEI MESSAZE SYNTAX.........ccvieiviecierieiiiesieesieetesieseesseesseeaessesseesseesseessesssessaesseens 309
D.1.7 Recovery point SEI MESSAZE SYNTAXveeviiierieriieiieieetesieesteeseetessaesseesseessesseesseesseessesssesssesseessesssessenns 309
D.1.8 Decoded reference picture marking repetition SEI message SyNtaxcccccevvevverieeciereeneenieeeeneeneens 309
D.1.9 Spare picture SEL MESSAZE SYNTAX ...c.vevvirieriieriieiieeieeieseesieesteeseeeetesstesseeseesessaesseesseesseessesssesseesseenseenns 310
D.1.10 Scene information SEI MESSAZE SYNTAXeeveruieriierieeiieiiesiestteteeteeeeesseesieeseessessaesseesseensesnsesnsesseenseenes 310
D.1.11 Sub-sequence information SEI MeSSaZE SYNIAX.......cueruerierieriieiieieetiesteerteeteeeteeieesieeseeeseeeeesneesneeseeenes 311
D.1.12 Sub-sequence layer characteristics SEI MesSage SYNtaX.........cccecueeierierienieeiieeiesienieeneesie e seee e seeenes 311
D.1.13 Sub-sequence characteristics SEI MeSSAZE SYNTAXccueeiueerurrieieiieieniienteeieeeeeieestee st esee e e eee e eneeenes 311
D.1.14 Full-frame freeze SEI MESSAZE SYNMTAXcc.eiuiruirtieiietieieieiesteete st ettt et et et etestestesbe et ebeeseeseeneeseneeseeeees 312
D.1.15 Full-frame freeze release SEI MESSAZE SYNEAXcc.eeuiiieiieriiriiiieeieeeieieeiiete ettt e e e see e eees 312
D.1.16 Full-frame snapshot SEI MESSAZE SYNEAX........c.ecverieriieriieiiereiieseesteesteetesseesseesseesseessesssesssesseessesssessns 312
D.1.17 Progressive refinement segment start SEI Message SYNtaX........ccocvvereerieerieieeneeniienrieeeeeeesieesseesesnenenes 312
D.1.18 Progressive refinement segment end SEI MESSAZE SYNTAXcvivvereerieriieriieieeeesieeieeveseesreeseesseenesenes 312
D.1.19 Motion-constrained slice group set SEI MeSSage SYNAXeevvievirierieriieriieieeeeeiesieeseesseseesneesneeneeenes 312
D.1.20 Film grain characteristics SEI MeSSaZEe SYNTAXcevueevuerierieriieiieieeeeetiesieeieetesaeseesseesseeeesneesseeseeenes 313
D.1.21 Deblocking filter display preference SEI message SyNtaXccvevvevvierierienierieesieeeesieesieeseeensessnesenenns 313
D.1.22 Stereo video information SEI MeSSAZE SYNEAX.......eecuerieriieriieriieiieieetiestee e et eiee e seeenaeeee e eaeeseeenes 314
D.1.23 Post-filter hint SET MESSAZE SYNTAXecueirtiertieitieieeieeie e sttt eteete st et eteenteeseesseesseesseeaeeneesneesaeeneeenes 314
D.1.24 Tone mapping information SEI MeSSaZE SYNTAXecueruierierieiieieeiienteeste e eteeiee e st see e eeee e seeenee 315
D.1.25 Reserved SEI MESSAZE SYMEAX......ccuertiertirieiieitierteerie ettt st et ettt e st e bt e bt estesbtesbeesbeebeemeesaeesaeenaeenee 315
IS I oY 0= To IS 17> s S 315
D.2.1 Buffering period SEI MeSSage SEMANTICS.ccueeruiriirieniieiieiieetiesttente et site st et ettt saeesbe et eseeeneenaeens 315
D.2.2 Picture timing SEI mMeSSaZE SCMANTICS.cc.eevvieriiiierierrieriieieeteeseesteesseesesaesseesseesseesseessesseesseessesssesseens 316
D.2.3 Pan-scan rectangle SEI MESSAZE SCMANTICScevervierrieriieieeieniesteesseesestesseesseesseesesseesseessesssesssessenns 319
D.2.4 Filler payload SEI MeESSAZE SCMANTICSccveerrierrierieeieiiiesieeteetesaeseeesseesseesseessesssesseesesssesssesseesseessessees 321
D.2.5 User data registered by ITU-T Rec. T.35 SEI message SemMantiCs........c.ccverueereervereereeneeeeeneesseenseenens 321
D.2.6 User data unregistered SEI message SEMANTICSc.eecuerveriieriieriieieeiesiesieeieeeeeaeseeseesseensesnnesneeseeenes 321
D.2.7 Recovery point SET MeSSaZE SEMANLICS........ccvveruerierieriieriieieetesiesteesseetesaeseeesseesseenseessesseesseessesssenseens 321
D.2.8 Decoded reference picture marking repetition SEI message semantics...........ccevvererereeeieneeneeieeeeennenns 323
D.2.9 Spare picture SEI MESSAZE SEMANTICSevveitierieeieiieiiiertiestteteeeeettestee et eteeetesseesseesseeeeenaesneeeneesseeneeenes 323
D.2.10 Scene information SEI MeSSage SEMANTICSevueeruieriieiiriiiniientieieete ettt ettt seesae e et eaeesaeenee 324
D.2.11 Sub-sequence information SEI message SEMANTICScecuiruerieriieriieniieiieniienieeieeieetesee e sieeaesee e 326
D.2.12 Sub-sequence layer characteristics SEI message SemMantiCs..........cccuerverierererereeieieieie e 328
D.2.13 Sub-sequence characteristics SEI mesSage SEMANTICSceevveeruirierierieriierieeeeeesseereesesereseesseeseennas 328
D.2.14 Full-frame freeze SEI MESSAZE SCMANTICS.ccueervierieieriieriiereereieeseeesteesseesseeseesseesseessenssesssesseesseessesses 330
D.2.15 Full-frame freeze release SEI MeSSaZe SCMANTICS.ecveerieerieerieiierieriieteeteeseeseesseesseeseessessaesseesseennas 330
D.2.16 Full-frame snapshot SEI MeSSage SCMANTICSc.eerververieriieriieiieeeeeeeseesieeseesesaesseesseesseensesnsesssesseenes 330
D.2.17 Progressive refinement segment start SEI message Semanticscccuevverierereneneneneeneeieneneneneennes 331
D.2.18 Progressive refinement segment end SEI message SemMantiCs.........c.oecveevereerieerieniieneeneenieeeeseeseeneeenns 331
D.2.19 Motion-constrained slice group set SEI message SeMantiCs..........ccueeeeruierieerieeienieneeneesie e seee e neeens 331
D.2.20 Film grain characteristics SEI message SeMANtICScueeuerirruieriieiieiietiesteeieeeeeie st seee e eee e seeenes 332
D.2.21 Deblocking filter display preference SEI message Semantics.oeverueereerieeierieneeneenie e seeeseeeneeens 338
D.2.22 Stereo video information SEI Message SEMANTICScccuervirieriieniieienieniienieeieeie ettt 339
D.2.23 Post-filter hint SEI MESSAZE SEMANTICSerueeueruiriieiieieieriesteete ettt et e ste ettt sse st eseeee e seeeseeeeseeenes 340
D.2.24 Tone mapping information SEI meSSage SEMANLICScccueruerieriieriieiieieniienieeieeie ettt see e eee e 341
D.2.25 Reserved SEI MESSAZE SCMANTICSeevveevierieierriesreeieetestesseesseesesssesssesseesseesseessesssessesssesssesssesssessessnes 343
ANNex E Video usability iNfOrMation.........cooiiiiiiie ettt b e b e ene s 344
0 YO | Y o1 =Y USSP U TP URTPRORRR 344
E.1.1 VUL PATAMELEI'S SYNEAXeetietientieiieitientiente et et setestte bt e bt esteeseesbeebeesbeemtesstesbeesbee bt eneeeneesbeenteensesneenbeens 344
E.1.2 HRD PArameters SYNTAK «...cecueeutieutertiertienteeteetesitesteentt et eateettestee bt esteestesbaesbeenbeebeeatesaeesbeenbeenteensesneenseans 345
E.2 VUL SEIMANTICS. ...ttt bbb et b bR h et s bt bt s b e b e st b e b e st nb et st et e ne e 346
E.2.1 VUL Parameters SCIMANTICSccveerveevereuereerieerseeseesteestesseesseessesssesssesseesseessesssesssessesssesssesssesssessesssesssessenns 346
E2.2 HRD Parameters SCIMANTICSccveeververtierieesteetestesstesseesseessesssessaesseessesssesssesssesseessesssesssesseessesssesssessenns 357
ANNEX G SCAlADI@ VIAEO COUIMNQ.viitiueieiiee ettt et ae ettt st et e b e s be bt s st et e se et e s besbeebesaeeaeennennan 359
LT oo o =SSP 359
G.2 NOIMALIVE REFENENCES........oeeeiccre e 359
B3 DEFINITIONS ..ttt bbbt b e et b e et bt s b e e b e seen e Rt e bt b e ekt h et bt b e b e nre e b 359
G ADDIrEVIBLIONS. ...ttt b et b e e h b e b b e Rt eh et b bt b bt b e b e b e nre et 363
LT 70 011/< 011 0] OO PP SR PPN PRTPTSTURPRRTON 363

ITU-T Rec. H.264 (11/2007) ix

X

G.6 Source, coded, decoded and output data formats, scanning processes, neighbouring and reference layer

L= L0 1S o1 363
G.6.1 Derivation process for reference layer macrobloCKS..........cevvieiiiiiiienieriiie e 363
G.6.1.1 Field-to-frame reference layer macroblock CONVErsion ProCess........cevvverierviervievesveseesseesseenesnennns 365
G.6.1.2 Frame-to-field reference layer macroblock CONVErsion ProCess........ccoovveriervieeeeieneesieenseesennesnennes 366
G.6.2 Derivation process for reference 1layer partitionsceccvereerieesieriesieneeseeeeeeeseesie e eaeseesseeseneeens 366
G.6.3 Derivation process for reference layer sample locations in reSampling...........ccoeevevverrerieecienieneenieennnns 367
G.7 SYNEAX AN SEMBNTICS.eeueeeeteite ettt et see st st et e e e tesbesaesbesbeeaeeae e e abeseeebesaeeheeaeeaeanbeneanbeseesbesbesneeneeneaneas 369

G.7.1 Method of specifying syntax in tabular forme.............ccoooeiieiiiiiiee e 369
G.7.2 Specification of syntax functions, categories, and deSCIiPLOrS.c.eeureeerierierieieeie et 369
G.7.3 Syntax in tabular Occoiiiiie ettt 370
G.7.3.1 NAL UNIE SYIEAX 1.ttt ettt ettt et sttt et enteeateeb e e sb e e be e bt eatesaeesaeesbee et emteeaeesbeenbeenbeenbeenaesnees 370
G.7.3.1.1 NAL unit header SVC eXteNnSION SYNEAXceeueruieierierieriertesiesieeseeeeeestestesteseeesesseeseeeensesseseens 370
G.7.3.2 Raw byte sequence payloads and RBSP trailing bits SyNtaX.........ccccceeevveveerieneereesieeeeseeseesneenenenas 370
G.7.3.2.1 Sequence parameter set RBSP SYNtaXccccoiiiiiiiiiiiiiiieie ettt 370
G.7.3.2.1.1 Sequence parameter Set data SYNTAXc.cccverviereereerieeienieseesteesreeeeeeeseesseessesaesseesseeseenns 370
G.7.3.2.1.2 Sequence parameter set extension RBSP SyntaX..........cccccceveievieniincieniienieniee e 370
G.7.3.2.1.3 Subset sequence parameter set RBSP SYNtaxccccccovveriieiiiiciinienieeeece e 371
G.7.3.2.1.4 Sequence parameter set SVC eXteNSION SYNTAXeerveeierrerieriienieeieeaeseesseesseeeesseesseesseenes 371
G.7.3.2.2 Picture parameter Set RBSP SYNTAXccuoeiuiiiiiiiiiiiiee e 371
G.7.3.2.3 Supplemental enhancement information RBSP Syntaxccoeceerieiieiinienieniee e 372
G.7.3.2.3.1 Supplemental enhancement information Message SYNtAXc.eceereereeriereereereeeeeeeeneeenss 372
G.7.3.24 Access unit delimiter RBSP SYNtaX.........cocieiiiiiiiiiiiiiiiiiet e 372
G.7.3.2.5 End of sequence RBSP SYNEAXcccoiiiiiiiiiiiieieieese ettt ettt 372
G.7.3.2.6 End of stream RBSP SYNTAXcc.eeuiiiiiiiiieiieteeicee ettt sttt eeea 372
G.7.3.2.7 Filler data RBSP SYNEAXccoeeciiiiiriieiiieiieieite sttt ettt steeteesseesbessaesseesseesseensesssesseanseenns 372
G.7.3.2.8 Slice layer without partitioning RBSP SYNtaxccccccveeiiiiiriieniiiiciieiecieseeie e 372
G.7.3.2.9 Slice data partition RBSP SYNtaX.......ccccceivieriiiriiiiiiierieie ettt seae e sreesessae e sseese s 372
G.7.3.2.10 RBSP slice trailing bits SYNTAXcceeverierieerieeieiiesieseete e eeeeseeesseesessesaesseesseesseensessnesseenes 372
G.7.3.2.11 RBSP trailing DitS SYNEAXcceeeieriieriieieeiesieseeseesieetestesttesteeneeenaeseaessaesseesesnsesssesseesseenseenes 372
G.7.3.2.12 Prefix NAL unit RBSP SYNAX.......cccciriiiiieiieiieie ettt se e sseese s 372
G.7.3.2.13 Slice layer in scalable extension RBSP SYNtax..........ccceccveeiirienieiieiieieseseeeeeee e 373
L 7 TG TN V(o7 s 1<T: T (<3) 1 2 - OSSPSR 373
G.7.3.3.1 Reference picture list reOrdering SYNtAXccueoieruereruirerieieieiese sttt sttt eiee et e e seeseeeneeneas 373
G.7.3.3.2 Prediction Weight table SYNTAXcccooiiiiiiieiiee ettt sttt 373
G.7.3.3.3 Decoded reference picture Marking SYNEAXcecuerueruereruerrireeieienieiesteseeste et eeeeneenseseeseeseeseeas 373
G.7.3.3.4 Slice header in scalable eXteNSION SYNEAX........ccveeruirreereeriiereeteeeeseesreesesaeseesseesseessesseesseesseenns 373
G.7.3.3.5 Decoded reference base picture marking SYNtaxc.cceeveerveerierriesiesrieseeseesseesessesseesseessennns 376
G.7.3.4 SHCE dAtA SYNTAX.....eccvieriertietieieiieitese et etesttesteesteesseesseessessaesseesseessesssesseesseesseesseessesssenssesseessesssesses 376
G.7.3.4.1 Slice data in scalable eXteNSION SYNTAX.......cccerrrerieerieriierreeiesteneeeteeteeaeseaesseesseesessesseesseesseenes 376
G.7.3.5 MacCroblOCK 1aYEr SYNEAXeecviiieiiieiiieitieie st stestt ettt ete st et eteeaeseesseesseesseenseensesseenseenseenseensesnnes 377
G.7.3.5.1 Macroblock prediction SYNEAXccceeeveiieriereerieetesiese et eteeetesseesseeseeaeseaesseenseensesnsesseesseenes 377
G.7.3.5.2 Sub-macroblock prediction SYNEAXceeruerierierierieeieeieste et et eeeeeeestee e eeeeeeseeesneenseeeeeneeene 377
G.7.3.5.3 Residual data SYNTAKcceeiiiieieiiiietiee ettt ettt ettt ettt et e neeene e e e eeenes 377
G.7.3.5.3.1 Residual Tuma SYNEaAX........coouieiiiiiiiiiieieee ettt ettt nee e 377
G.7.3.5.3.2 Residual block CAVLC SYNEAX ...c..eiuiiuiruiiiieiieiieieie ettt ettt st st ese e e eseeneeees 377
G.7.3.5.3.3 Residual block CABAC SYNTAXccuiiuiiuiiieiieieieie sttt ettt et ettt ese e eesaeseeeees 377
G.7.3.6 Macroblock layer in scalable eXtENSION SYNEAXccveueruerterterieeiirietieieieeestestesteeeeeteeseeneeeeeesaeseeees 377
G.7.3.6.1 Macroblock prediction in scalable eXtenSioN SYNtAXcceevvereerrierreeriesiereenieeseereseeesseesseenns 379
G.7.3.6.2 Sub-macroblock prediction in scalable eXtension SYNtaX..........cccvereerviecrerveneenieenieseeseeeseeeseenns 380
G.74 SEIMANEICS ...ttt ettt ettt ettt e et b e s bt b e bt eat e s et et e s bt eb e e bt e bt es b e e et e s bt sbeebeebeebeeneensebeneebes 380
G.7.4.1 NAL UNIE SEIMAINTICS «..eovevieiientitertieteritetteitet ettt st ettt et ea et et e s be bt sbeebtest et et esbesbesbesbeeseestenseseneeanes 381
G.7.4.1.1 NAL unit header SVC eXtension SEMANLICSccuevveruerrerrirererieieeetertentesesiesresseeseesensenseneens 381
G.7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences 382

G.7.4.1.2.1 Order of SVC sequence parameter set RBSPs and picture parameter set RBSPs and their

activation 382
G.7.4.1.2.2 Order of access units and association to coded video SEqUENCES..........cevveevvreeerierreenreennenns 386
G.7.4.1.2.3 Order of NAL units and coded pictures and association to access Unitsc..cceeeveenneenn. 387
G.7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picturecccccererererencneenen. 387
G.7.4.1.2.5 Order of VCL NAL units and association to coded pictures..........cccceeeverevereereerreseeseennenn, 388
G.7.4.2 Raw byte sequence payloads and RBSP trailing bits Semantics............cceevvevvrerveeieneerreenrenvenneseennes 388
G.7.4.2.1 Sequence parameter set RBSP SEMANtiCS........cceeeviiiiiiierieiieiieieeiesiieie e eee st sre e 388
G.7.4.2.1.1 Sequence parameter set data SEMANTICSccveerveeeierierieriieieeteeeeseesreetesaeseesseesseeaeennenes 388
ITU-T Rec. H.264 (03/2005)

G.7.4.2.1.2 Sequence parameter set extension RBSP Semantics..........ccceccveeveeeiieinieciieiiieeecieeeiee e 389

G.7.4.2.1.3 Subset sequence parameter set RBSP Semantics............ccvevvirierierienieeieieeseeneeee e 389
G.7.4.2.1.4 Sequence parameter set SVC eXtension SEMANTICS..........ccuereerreerreerrerieereeseesseeseseesseesseenns 389
G.7.4.2.2 Picture parameter set RBSP SEMANtiCS........cccvevuieriiiiiiieriieiicieeeesie ettt 391
G.7.4.2.3 Supplemental enhancement information RBSP semantics............ccceeveeeiirierieneeneeiesee e 391
G.7.4.2.3.1 Supplemental enhancement information message SEMANTICSecveerverrereereereeeeeneenenenss 391
G.7.4.2.4 Access unit delimiter RBSP SEMAaNtiCS.ccceveiiiiriniinininiieetetetete sttt 391
G.7.4.2.5 End of sequence RBSP SCMANTICSccveruieriieiiieiiiie ettt ettt te e sae e saeeseensesnne e 391
G.7.4.2.6 End of stream RBSP SEMANTICScccuieiuiriiiiiiieitieie ettt 391
G.7.4.2.7 Filler data RBSP SEMANTICSccuteiieiiiitieitieieeie ettt ettt st eeee e 391
G.7.4.2.8 Slice layer without partitioning RBSP Semantics.............ccecveririirierienieeee e 391
G.7.4.2.9 Slice data partition RBSP SEMANTICSccceevvieriiiiiiieiieiteeie et eete et ere s eeeseesreesaeeseesne e e 391
G.7.4.2.10 RBSP slice trailing bits SEMANTICSc..eeeeuieierierierieeteeteeiteeteteiese ettt et eseeeenseseesteseeeeeeneeneas 391
G.7.4.2.11 RBSP trailing DitS SEMANTICScveeverrierieeriieieieeieesieesteeteetesseesteesseesesssesseesseesseessesssesseesseenns 391
G.7.4.2.12 Prefix NAL unit RBSP SEMANLICSccueviriiiiiiieieieieierest ettt 391
G.7.4.2.13 Slice layer in scalable extension RBSP S€MaNticscceevverierieeriiecienieniesieeie e seeesveeneenns 392
G.7.4.3 Slice header SEMANTICSecuervirteriiriieitiieiert ettt ettt ettt et ettt be bttt et eat et e e e ae e enes 392
G.7.4.3.1 Reference picture list reordering SEMANTICS..........cverveerieeriierierierienieieetesreseesseessessesneesseesseenes 392
G.7.4.3.2 Prediction weight table SEMANTICScc.eeivieriiriieiieriere ettt aesete e seeaesseesseeseenes 392
G.7.4.3.3 Decoded reference picture marking SEMANtICScueerveeeeruieriierieeieeieseeneeesieeeeseeseee e eee e 392
G.7.4.3.4 Slice header in scalable eXtension SEMANTICScoeereeriierireiertiereee et eeee e 392
G.7.4.3.5 Decoded reference base picture marking SEMANLICSc.eeeverueeruieriierieeienienieneeeee e seeeseeeneeens 401
G.7.4.4 SHiCE data SEIMANTICS ...c.verueiueieietieiieeiet ettt ettt et e et e e e teeteebeeteebeeseess e e ensesbeeteebeeseeseeneensensensensesaeanes 402
G.7.4.4.1 Slice data in scalable eXtension SEMANTICSccceruerertirtireeieieieie et seeeteeeeeeeneeseeseeseeseeeneeneas 402
G.7.4.5 Macroblock 1ayer SEMANTICSc.ceuieriiieiteitieteeie ettt ettt et e te s te s bt ebeeseeseeneenseneeneeeaesaeenes 402
G.7.4.5.1 Macroblock prediction SEMANTICSccveeuereereertieieeteeeesteesseeseeseeseesseesseessessesseesseesseesseessenns 402
G.7.4.5.2 Sub-macroblock prediction SEMANTICS..........ccueivverrieriieriieieereesieereeseeaesreesseesessesseesseesseesseessenns 402
G.7.4.53 Residual data SEMANLICScc.erueruiriiieieierierieet ettt ettt ettt sbe b bttt e seeneenbe e 402
G.7.4.5.3.1 Residual [uma SEMANTICScoerueruiriiiiiiniinienieeierie ettt ettt st s 402
G.7.4.5.3.2 Residual block CAVLC SEMANTICScouerueeuiiieieniiniinieniteeeeeetetent ettt see e 402
G.7.4.5.3.3 Residual block CABAC SEMANLICS....c..ceuerueeuiiieieniiniinteniteieeieeitete ettt ettt e e enes 402
G.7.4.6 Macroblock layer in scalable eXtension SEMANICS...........ecieruiereriierieriere e eee ettt 403
G.7.4.6.1 Macroblock prediction in scalable extension SEMANTICS..........cuerureriereerierieriereee e eee e 404
G.7.4.6.2 Sub-macroblock prediction in scalable extension SEMANTICS.ccveevereerreerieerieeeeseerreereeeeans 404
(TR TSV @0 = o o [g To 0 o= 405
G.8.1 SVC initialisation and deCOdING PrOCESSESccueruiruirirrieieieierierie st eteeeeeetesees e see et ebeeseeseeeeeesseseeenes 406
G.8.1.1 Derivation process for the set of layer representations required for decodingcccoeevevverrrenenen. 406
G.8.1.2 Array assignment, initialisation, and restructuring ProOCESSESc..cvverrierriervereereerrerssesreseessesssessns 406
G.8.1.2.1 Array assignment and iNitialiSAtioN PLOCESSccvverreerieeriirrieriesieenreeteesesreseesseesesssesseesseesseenns 406
G.8.1.2.2 AITAY TCSIIUCTUIING PIOCESS ..uvvervreureerreerrerseenseesessesseesseasseesesssesssesseensessesssesseesseessesssesssesseesseenes 408
G.8.1.3 Layer representation deCOAING PIrOCESSESvervierrrrerrerrierreereeteseesseesseesseeseesseesseesessesssesseessesssesnes 409
G.8.1.3.1 Base decoding process for layer representations without resolution change..............ccoecveureneenne 409
G.8.1.3.2 Base decoding process for layer representations with resolution change............ccoccovceevienieene 410
G.8.1.3.3 Target layer representation deCOdING PIOCESSccuverueerureruieriieieniientieieeieeeteereeseeeneeeee e seeeneeenes 411
G.8.1.4 SIiCE ACOMING PIOCESSESeuveeurerueeiuieiuiertteteeteette et eete e e enteeetesseesseesteenseeneeesee st anseenseenseeseenseenseensennees 412
G.8.1.4.1 Base decoding process for slices without resolution change..............ccccooeveriiiiiinieienenee e 412
G.8.1.4.2 Base decoding process for slices with resolution change.............ccoceeeeereeienenene e 412
G.8.1.5 Macroblock initialisation and decOdING PrOCESSESecuerveruerueruieieieierteete st eeeeeeeeeieseeseeseeeeeeneeneenes 413
G.8.1.5.1 Macroblock INitialiSAtION PIOCESS.eevverreerrerreriereerieesteeteesesseesseesseessesssesseesseesseessesssesseesseenns 413
G.8.1.5.1.1 Derivation process for macroblock type, sub-macroblock type, and inter-layer predictors for
reference indices and MOLION VECLOTS.....c..eiuirirtiriiitiieeiietetete sttt ettt ettt st et e bbb et et e e e entenaeseeenes 414
G.8.1.5.1.2 Derivation process for quantisation parameters and transform typeccoecveveveverrvenncnne. 415
G.8.1.5.2 Base decoding process for macroblocks in slices without resolution changeccccceeevenenne 417
G.8.1.5.3 Base decoding process for macroblocks in slices with resolution change..............ccccccevvenreene 418
G.8.1.54 Macroblock decoding process prior to decoding a layer representation without resolution change
and tcoeff level prediction flag equal t0 0........ccooiiiiiiiiiiiiiie e 420
G.8.1.5.5 Macroblock decoding process prior to resolution changeccoceeeeeeeerierenene e 420
G.8.1.5.6 Target macroblock deCOdING PIrOCESSccueruieuiruieieieiete ettt ettt st ebe et enee e e 421
G.8.2 SVC reference picture lists construction and decoded reference picture marking process..................... 423
G.8.2.1 SVC decoding process for picture Order COUNL...........c.ecierieeiieicierierieere ettt ereeere e e e eseesaesenes 424
G.8.2.2 SVC decoding process for PICtUre NUMDETSc.eccvieierieriieriieieiie e stesteeteeeeeeeesreeseeseessessaesseesnas 425
G.8.2.3 SVC decoding process for reference picture lists CONSIUCHONccveevirverieriieiieieeeeeeesieere e eeees 427
G.8.2.4 SVC decoded reference picture Marking PrOCESS.........ccveeveeruerrereereesreeseeseeseesseesseesessesssessaessesnses 428

ITU-T Rec. H.264 (11/2007) xi

G.8.2.4.1 SVC reference picture marking process for a dependency representationcccceeevererenens 428

G.8.2.5 SVC decoding process for gaps in frame NUIMcceiiiiiiiieieieee et 430
G.8.3 SVC intra deCOING PIOCESSESecvieevirererireriierteeieetestesteesseesseesseessesseesseeseessessaesseesseessesssesssesseesseessesnns 431
G.8.3.1 SVC derivation process for intra prediction MOAES..........cccvereereeriieciieieriereere et ere e e 431
G.8.3.1.1 SVC derivation process for Intra_4x4 prediction MOAESccveverieriereeiierie e reesie e 432
G.8.3.1.2 SVC derivation process for Intra_8x8 prediction Modesceevverieriesieiiesierieseee e 432
G.8.3.2 SVC intra sample prediction and CONSIIUCHION PIOCESSeevverveerreerrerrerieneierteeeeeeesseesseesseesessesnnes 434
G.8.3.2.1 SVC intra prediction and construction process for luma samples or chroma samples with
ChromaArrayTyPe €qUAL L0 3oouiiiie ettt ettt ettt et e et e s et e e teenteeneeemaesneesneeneeenes 435
G.8.3.2.1.1 SVC construction process for luma samples and chroma samples with ChromaArrayType
equal to 3 Of I PCM MACTODIOCKScoouiiiieiieiieiiet ettt sttt et nee e 435
G.8.3.2.1.2 SVC Intra_4x4 sample prediction and construction ProCessceeerereeereeeeseeseeseeneennes 436
G.8.3.2.1.3 SVC Intra_8x8 sample prediction and construction ProCessceeerereeereeeeneeseesueneennes 436
G.8.3.2.1.4 SVC Intra_16x16 sample prediction and construction ProCess........c.eccvereerverrverveereerveernenns 437
G.8.3.2.2 SVC intra prediction and construction process for chroma samplescccecvvveeevciereenieerneeiens 438
G.8.3.2.2.1 SVC construction process for chroma samples of I PCM macroblocks............c..cceevenennn. 438
G.8.3.2.2.2 SVC intra prediction and construction process for chroma samples with ChromaArrayType
<Te |1 IR L T) TSRS 438
G.8.4 SVC INter PrediCtion PrOCESSveeviereerieriierteeteetestesseesseesseesesseesseesseenseassesssesseesseesesnsesssesseesssesseesseenes 439
G.8.4.1 SVC derivation process for motion vector components and reference indicescceceerereerennne. 439
G.8.4.1.1 SVC derivation process for luma motion vector components and reference indices of a
macroblock or sub-macroblock Partitionc.ceeeriiiiriiie e 441
G.8.4.1.2 SVC derivation process for luma motion vectors and reference indices for B_Skip,
B Direct 16x16, and B_Direct 8x8 in NAL units with nal unit_type equal to 20cccoeceeiriieiierienaeene 444
G.8.4.2 SVC decoding process for Inter prediction SAMPIESccceveeuerieieierieieieee e 445
G.8.4.2.1 SVC derivation process for prediction WeIZhtS........cccveruieriieierierieiieie et ere e 448
G.8.4.2.2 Intra-inter prediction COMDINALION PIOCESS.cveeverrerrerrierteereereeeesseesseesseessessesseesseessesssesseenns 449
G.8.5 SVC transform coefficient decoding and sample array construction proCesses.cceeevereerreerveervernenns 450
G.8.5.1 Transform coefficient scaling and refinemMent ProCEeSS........cccvereereererrieriieriereeieeee e eeee e ere e eeees 450
G.8.5.1.1 Refinement process for luma transform coefficients or chroma transform coefficients with
ChromaATrrayTyPe €QUALTO 3oouieiieieeie ettt e e st et e st e et e et e eseessee s eenseensesssesnsesneesseenseenns 451
G.8.5.1.1.1 Assignment process for luma transform coefficient values or chroma transform coefficient
values with ChromaArrayType equal to 3 for I PCM macroblocks..........cccceveerieniriiiiiieieceeeeee 451
G.8.5.1.1.2 Refinement process for transform coefficients of residual 4x4 blocks...........ccceevvievevrrennnn. 452
G.8.5.1.1.3 Refinement process for transform coefficients of residual 8x8 blocks...........ccceevvieverriennnnns 453
G.8.5.1.1.4 Refinement process for transform coefficients of Intra_16x16 macroblocks....................... 453
G.8.5.1.2 Refinement process for chroma transform coefficients...........cccocevveevieriiiciiiienieneee e, 455
G.8.5.1.2.1 Assignment process for chroma transform coefficient values for | PCM macroblocks...... 455
G.8.5.1.2.2 Refinement process for chroma transform coefficients with ChromaArrayType equal to 1
or2 456
G.8.5.2 Transform coefficient level scaling process prior to transform coefficient refinement...................... 457
G.8.5.3 Residual construction and acCUMUIAtION PIOCESSeververieriieriieieeteeieseeeseeeeeetesaesseesseeseesesnnesns 459
G.8.5.3.1 Construction process for luma residuals or chroma residuals with ChromaArrayType equal to 3
460
G.8.53.1.1 Construction process for luma residuals or chroma residuals with ChromaArrayType equal
t0 3 Of I PCM MACTODIOCKS ...ttt sttt ettt e e 460
G.8.5.3.1.2 Construction process for residual 4X4 DIOCKS........c..ccvieiirieriieciieiicieseee e 460
G.8.5.3.1.3 Construction process for residual 8X8 DIOCKS........c..ccueviirrieriieiiieiicieceee e 461
G.8.5.3.1.4 Construction process for residuals of Intra_16x16 macroblocks............ccceeevereverieneerirnnenne 461
G.8.5.3.2 Construction process for chroma reSiduals...........cccccverieriieriiriienierii e 462
G.8.5.3.2.1 Construction process for chroma residuals of I PCM macroblockscccccerieriirvirennnn. 462
G.8.5.3.2.2 Construction process for chroma residuals with ChromaArrayType equal to 1 or 2............ 462
G.8.5.4 Sample array acCUMUIAtION PIOCESSecvervrerrieieereeeertiesteesseeteseesseesseeseaseesseesseensesssesssesseesseessesnnes 463
G.8.5.4.1 Picture sample array CONSIIUCTION PLOCESSeeververueerueeriierieeeeeeesseesteeteeseeseesseesseesseenseeeesneens 464
G.8.5.4.2 Macroblock sample array eXtraction PrOCESScueevereerueerteeeeerieneeenteeteeeeseeseeesseeseeneesneesseenes 464
G.8.5.4.3 Picture sample array construction process for a colour componentccecceveeveenvereeneennenne. 465
G.8.5.4.4 Macroblock sample array extraction process for a colour componentccoceeeeeeveeeeeeeensn. 465
G.8.5.5 Sample array re-initialiSAtion PIOCESSeeveeererreeieieiertentesteeteeteeteeseeteeestesteabeeseeseeneensesansesaeseeenes 466
G.8.6 Resampling processes for prediction data, intra samples, and residual samples............cccccocerererenennene 466
G.8.6.1 Derivation process for inter-layer predictors for macroblock type, sub-macroblock type, reference
INAICES, ANA MOTION VECLOISeeeiiuiiiiiiieieeitieeeeeeieeeeeeeeeeeteeeeesteeeeeesaeeeeesaeeeseteeeeeaseesanseeesessreesesnsreessseeesaseeesanes 466
G.8.6.1.1 Derivation process for reference layer partition identificationscocceeevereeerieriiecieeeeneenienns 467
G.8.6.1.2 Derivation process for inter-layer predictors for reference indices and motion vectors.............. 469

xii ITU-T Rec. H.264 (03/2005)

G.8.6.1.3 Derivation process for inter-layer predictors for P and B macroblock and sub-macroblock types

473
G.8.6.2 Resampling process for iNtra SAMPLESc.eeverieriieiieiieiiere ettt eee st sre s e see e esbeesseseaesseesseennas 476
G.8.6.2.1 Resampling process for intra samples of a macroblock colour component................ceevveveenennne 476
G.8.6.2.2 Reference layer sample array construction process prior to intra resampling..............cceeveennenne. 478
G.8.6.2.2.1 Derivation process for reference layer slice and intra macroblock identifications............... 480
G.8.6.2.2.2 Construction process for not available sample values prior to intra resampling 481
G.8.6.2.3 Interpolation process for Intra Base predictioncocveeveeieeienieniieiece e 482
G.8.6.2.4 Vertical interpolation process for Intra_Base prediction.............cceceevieienieiienceneecee e 484
G.8.6.3 Resampling process for residual SAMPLES.......c.eeverierieiieiiee et 485
G.8.6.3.1 Resampling process for residual samples of a macroblock colour componentc....... 486
G.8.6.3.2 Reference layer sample array construction process prior to residual resampling..............c......... 487
G.8.6.3.2.1 Derivation process for reference layer transform block identifications.............ccccceeeeeeennee. 489
G.8.6.3.3 Interpolation process for residual Prediction........c..ccvevveriieriieiesiereeieeie e 490
G.8.6.3.4 Vertical interpolation process for residual predictionc.occvevveeieecienienieneeie e 491
G.8.7 SVC deblocKing filter PrOCESSESevirririerieitieriieteeetesee st esteeteesteeseesreeseesseessesseesseessesssesssesseesseeseenns 491
G.8.7.1 Deblocking filter process for Intra Base prediction............cecvevvereeerierierierieeeeeeeseee e 491
G.8.7.2 Deblocking filter process for target repreSeNtationS.........ccverveererrverieeriereerieeeeeeesreeseeseeaessaesseennes 492
G.8.7.3 Derivation process for quantisation parameters used in the deblocking filter process....................... 492
G.8.7.4 Macroblock deblocking filter PrOCESSccuieuieuiirtieiieiiee ettt 493
G.8.7.4.1 SVC filtering process for block €dges........ceruiriiiiiiiiriei e 497
G.8.7.4.2 SVC filtering process for a set of samples across a horizontal or vertical block edge................. 498
G.8.7.4.3 SVC derivation process for the luma content dependent boundary filtering strength.................. 499
G.8.8 Specification of DItStrEamM SUDSELS........ccviiiiiieiieiieeie ettt ettt b e s ste e reeaeeneereesreeseenns 502
G.8.8.1 Sub-bitStream eXtraCtiOn PIOCESS........ccverreerriereieerteesteeteetesseesseesseesseessesseesseesseessesssesseesseesesssessensees 502
G.8.8.2 Specification of the base layer DItStrEaAM...........ccuivcvirierieiieie ettt be e enees 502
G.O PaIrSING PrOCESScitirteueeterteueetesteueeteseeseateseesesbeseeaesbeseeseabeseebesbeseebesEeseebe s Ee e eb e sE e e ek e se e e ebeseeneebenbeneebenbe e ebenbeneebens 502
G.9.1 Alternative parsing process for coded block pattern............ocvevvieiiiieriecice e 503
G.9.2 Alternative CAVLC parsing process for transform coefficient levels..........cooceeveeeiiciencieniiieeieeiees 504
G.9.2.1 Additional parsing process for total number of transform coefficient levels and trailing ones.......... 504
G.9.2.2 Alternative parsing process for run information.............cceceereerieriierienierie e 506
GI93 Alternative CABAC parsing process for slice data in scalable eXtension............cceevevvereerieneeseesennenns 507
G.9.3.1 TNItiAliSAtION PIOCESS. . cuveeutreuteeuterieerueerteenteeteeneeeteesteaneeenteeneesseeaseeaseenseaneesaeesseenseanseenseeneesseenseanseensesnees 507
(G.9.3.2 BiNATIZALION PIOCESS .uveeuvrrerureererrerireertreerreessteassseesseeassseessesassseessesassessssessssessssessssessssesssessssessssesssseesns 509
G.9.3.3 Decoding PrOCESS FlOWcc.eiuiiiiiieieiie ettt ettt ettt e bt st s et e e be b eeesbeseeenes 509
G.9.3.3.1 Derivation process for CtXIAXccieviiiiiiiiiiiiiicie ettt be e rae et reene e 509
G.9.3.3.2 Assignment process of ctxIdxInc using neighbouring syntax elements.............cccocvevveeerererenennn. 510
G.9.3.3.2.1 Derivation process of ctxIdxInc for the syntax element base_mode flag.............ccoeeueenennn. 510
G.9.3.3.2.2 Derivation process of ctxIdxInc for the syntax element residual prediction flag............... 510
G.10 ProOfilES AN IQVEIS. ..ottt et et b e et b e e st R e bR e b r e nenr e ere s 510
G101 PIOTILES ettt ettt ettt st h e bttt et et b e bt e bt s ae et e et et e e et e 510
G.10.1.1 Scalable Baseline Profile...........cceeeuiicieiierieiieieeieeieeee ettt ete e ssee s e enseennes 510
G.10.1.2 Scalable High Profile.........coooiiiiiiiiiii ettt ettt b e 511
G.10.1.3 Scalable High INtra profilecccoeierieiiieeesieee ettt 512
L 08) <) L USSP 513
G.10.2.1 Level limits common to Scalable Baseline, Scalable High, and Scalable High Intra profiles 513
G.10.2.2 Profile Specific 1eVel IIMILS.......cceeoiiiiiiieiticiieiecteeete ettt ettt sre bt reesveebeesseennas 515
LT I R Y (=S (== g o 107 | 517
G.12 Hypothetical referenCe dECOUESot b e et b e st b e eb e b e b 517
G.13 Supplemental enhancement INFOrMEALTION ..ot ere 517
G.13.1 SEIPAYIOAA SYNTAX ..cuvieiiieiieitieiieiieieete et este ettt e et e eteesteebeesbessaessaesseeseesseessesseesssenseessenssasssessansenssesnes 517
G.13.1.1 Scalability information SEI MeSSage SYNIAXcccuerrerrierierrierieiieseiesreeeeeeeseeeseeesessesenesseeseesesnnes 517
G.13.1.2 Layers not present SEI MeSSAZE SYNEAX......c.ueeruieriiieriiieriienitenieenteesiteesteesiteesteesieeesiteesbeeesbeesreeens 520
G.13.1.3 Layer dependency change SEI MEeSSAZE SYNAXecueerverrueriierierieerieeeeeeeeteeseeeteeeeeneesseeseeeneeeeesnees 520
G.13.1.4 Sub-picture scalable layer SEI MesSage SYNtAX..........eeeerieruieiierieiiereienieeee e eieeseeeee et eeee e e 520
G.13.1.5 Non-required layer representation SEI MeSSaZe SYNTAXeevererriereieniieiiieieeeienieenieeie e seeeseeeneeenees 521
G.13.1.6 Priority layer information SEI MeSSaZe SYNtAXcceeruieriirriirieiieiieniteie ettt 521
G.13.1.7 Scalable nesting SEI MeSSAZE SYNMEAXccueeuieuiiriieniientieieete e stcerte et etestee st et et sieesbeesbeebeenaesaees 521
G.13.1.8 Base layer temporal HRD SEI MESSAZE SYNAXc.ceiuerieriiiiiiieeiieiieiieieieie ettt s 522
G.13.1.9 Quality layer integrity check SEI MeSSage SYNTaXcccceevverieriereeriieieeiesieesieeieeseseeesreesessesenas 522
G.13.1.10 Redundant picture property SEI MesSage SYNLAXcccereueriereereerreeieeienreesseeseesesseesseessessessns 523
G.13.1.11 Temporal level zero dependency representation index SEI message syntaX.........ccceeevevverreenennen. 523
G.13.1.12 Temporal level switching point SEI meSSage SYNtaXcceccvereerieriierienieniieieeieeeeseeesieeseesesenes 523

ITU-T Rec. H.264 (11/2007) Xiii

G.13.2 SEI Payload SEMANTICS ...cc.ueiuieriiiriieieeie ittt sttt ettt st esb e ettt eatesb e et e b e enbeeetenbeenbeenseenees 523

G.13.2.1 Scalability information SEI message SeMAaNtiCscceerueruerierienieenieeienitenieeie e seee e nbeereeae e 524
G.13.2.2 Layers not present SEI MeSSage SCMANTICScveeverereieereerieeieiieseesseesseeseeseesseesseessesssesseesseessenses 532
G.13.2.3 Layer dependency change SEI message SCMANLICSccverveerreereeieerienieerieeeeseesseesseeseesessnesseens 533
G.13.2.4 Sub-picture scalable layer SEI message SEMANTICSccverveerieerieieeiieniiesieeeeeeeesseesseeseessessnesseens 533
G.13.2.5 Non-required layer representation SEI message SemManticCs.........c.ecvverueererecvereeseerienieeseeseesseensennnes 533
G.13.2.6 Priority layer information SEI Message SEMAaNtICS..........ccverreererriereerierieieeeeeeeeseeeseesessesaesseennes 534
G.13.2.7 Scalable nesting SEI MeSSaZE SEMANTICSeeververierrieieerieeeeseeseeeseeeseeeseesseesseeseesesssessaesseensesnnes 534
G.13.2.8 Base layer temporal HRD SEI message SeMAaNtiCsccereererreerierierieeiieeeeneesieeeeeeeeeeeeeeesneenees 535
G.13.2.9 Quality layer integrity check SEI message SeMantiCsccceervereerienierireieeiesieesieeie e seee e enees 536
G.13.2.10 Redundant picture property SEI message SEMaNtiCscceeveriereereierireieeienieenieeieeeeseeeseeesee e 536
G.13.2.11 Temporal level zero dependency representation index SEI message semanticsccecevueeenee. 537
G.13.2.12 Temporal level switching point SEI message SemMantics............ceoerererereeerieieienieieseese e seeenes 538
G.14 SVC video usability iNfOrMation EXEENSIONccceirieieerieiere ettt st b e se e bbb seese b seere s 539
G.14.1 SVC VUI parameters eXtENSION SYNTAXceeeeerreerreruereereesseessessesseesseesseessesssesssessesssesssesssessesssesssesees 539
G.14.2 SVC VUI parameters eXteNSiOn SEMANTICScveeverreerreerreeirerueseesseesseessesssesseesseesseessesssesssesseessesssesnes 539

LIST OF FIGURES

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame............c.cccceuce.... 20
Figure 6-2 — Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields.................. 21
Figure 6-3 — Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame............c.ccccceueeee. 21
Figure 6-4 — Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields...................... 22
Figure 6-5 — Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a frame............c.ccccoeee.... 22
Figure 6-6 — Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields...................... 23
Figure 6-7 — A picture with 11 by 9 macroblocks that is partitioned into tWo SICES.......c.ccoerirereririienieiencneneseeieeen 24
Figure 6-8 — Partitioning of the decoded frame into MacrobloCK PAILSc.ecvvieeieiirieriieiieieeiee e 24

Figure 6-9 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock

PATTIEION SCAIS ...vvieeriesiieeetteesteeetteesteestteestteesseeesssaeasseessseeasseessaesseessseenssesssseensseensseessesssseanseesnseesnseesnseesssessnsesnnseenns 26
Figure 6-10 — Scan for 4X4 TUMa DLOCKSoiiiiiiiitiit ettt sttt ettt et e et e bt eeeebe e st ense e e sbeebeeaeeneenean 27
Figure 6-11 — Scan for 8X8 Tuma DIOCKSooueiiiieiiei ettt ettt sttt se e e e e ne 27
Figure 6-12 — Neighbouring macroblocks for a given macrobloCKc.ecierierieriieciieieeiesiieieee e 28
Figure 6-13 — Neighbouring macroblocks for a given macroblock in MBAFF frames.........c.ccocovevininiinieniincncncneeee 29
Figure 6-14 — Determination of the neighbouring macroblock, blocks, and partitions (informative)cc.ccocevcerenene 30

Figure 7-1 — Structure of an access unit not containing any NAL units with nal unit_type equal to 0, 7, 8, or in the

range of 12 to 18, inclusive, or in the range of 20 t0 31, INCIUSIVEc.eeiiieiiiiiieieeee e 64
Figure 8-1 — Intra_4x4 prediction mode directions (INfOrMAtiVe)ceevverrieieierierieie et 124
Figure 8-2 — Example for temporal direct-mode motion vector inference (informative)cocevcevereeienienienenennenn 155
Figure 8-3 — Directional segmentation prediction (InfOrMatiVe)c.eruereiiriririeieieiee et 156

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks
with lower-case letters) for quarter sample Tuma Interpolation............cceeeerieiieiinieneeeee e 162

Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer position

SAMPIES A, B, C, QN Dottt ettt ettt ettt et e e st e eh e e bt e teenteenteennas 164
Figure 8-6 — Assignment of the indices of dcY to Iumadx4BIKIAXcceeviriiiiiieiierieeee e 170
Figure 8-7 — Assignment of the indices of dcC to chroma4x4Blkldx: (a) ChromaArrayType equal to 1, (b)

ChromaATITay TYPE SQUAL L0 2oocviiiieiieieeieieesieete et ete st et ebe et e et e ese e teesbeessessaessaesseesseesseesseasseassasssesseensenssessnns 172
Figure 8-8 — 4x4 block scans. (a) Zig-zag scan. (b) Field scan (informative)ccererereninenieieeiee e 174
Figure 8-9 — 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (informative)ccoceevievieienenieneeeeee, 175

Xiv ITU-T Rec. H.264 (03/2005)

Figure 8-10 — Boundaries in @ macroblock to be filtered.ocoiiiiiiiieieieee e 194

Figure 8-11 — Convention for describing samples across a 4x4 block horizontal or vertical boundaryc......... 198
Figure 9-1 — Illustration of CABAC parsing process for a syntax element SE (informative)cc.ccceceevvenenencncnnne 219
Figure 9-2 — Overview of the arithmetic decoding process for a single bin (informative)...........ccoccveveeeieecierceeneeneenen. 265
Figure 9-3 — Flowchart for decoding @ deCISIONcc.eeuiiiiiiieriiiiieieeie ettt et sttt et eae e see e e e 266
Figure 9-4 — Flowchart of r€n0ormaliZationeoouieiiriiriieiieie ettt ettt eee st e b e teeneeeneeeneas 268
Figure 9-5 — Flowchart of bypass deCOTING PIOCESS......cc.eevuieierieriieiieiieiesteseesttesteeaesresseesseeseensesssesssesseenseensessennnes 269
Figure 9-6 — Flowchart of decoding a decision before terminationcocceereeieienienienenene et 270
Figure 9-7 — Flowchart for encoding & dECISIONccueuiriiriiriietieieeie ettt ettt sttt ee st seeeenee e e 271
Figure 9-8 — Flowchart of renormalization in the @nCOAErooiiiiiiieiiiie e 272
Figure 9-9 — Flowchart 0f PUtBIt(B).......ccceioiirieiieie ettt sttt ettt e et e enseesaessaenseenseensesnsennnes 272
Figure 9-10 — Flowchart 0f enCOAING DYPaSS.....eciuiiriiriirieiieiieie ettt sttt ettt e e see st e nteessessaesseenseenseensennnas 273
Figure 9-11 — Flowchart of encoding a decision before terminationcocooeeerieieieienieniienesesieeeeiee e 274
Figure 9-12 — Flowchart of flushing at termination..............coeiiiieieieieeeste ettt se e 274
Figure C-1 — Structure of byte streams and NAL unit streams for HRD conformance checkscccocoeevirienienenne. 293
Figure C-2 — HRD BUFTEr MOGEL.......couiiiiiiiiiiiiiiniiieneee ettt ettt st sttt nae e 294

Figure E-1 — Location of chroma samples for top and bottom fields as a function of chroma_sample loc_type top field
and chroma_sample loc_type Dottom fIeldccviviiiiiiiiiicicccceeee e 353

LIST OF TABLES

Table 6-1 — SubWidthC, and SubHeightC values derived from chroma format idc and separate colour plane flag...19

Table 6-2 — Specification of input and output assignments for subclauses 6.4.10.1 t0 6.4.10.7........cccoeoevieierreneneenne. 30
Table 6-3 — Specification 0f MBAAAINoooiiiiiiiieiieee et e st ste e ssee st et e enseenseessessaesseennas 34
Table 6-4 — Specification of MBAAAIN and YIMccouiiiiiiiiiiieieeee ettt sea e beesbeenaesaeesseeseenns 36
Table 7-1 — NAL unit type codes, syntax element categories, and NAL unit type classes..........ccceeeereerienieneneneneseeenne 59
Table 7-2 — Assignment of mnemonic names to scaling list indices and specification of fall-back rule...............c......... 69
Table 7-3 — Specification of default scaling lists Default 4x4 Intra and Default 4x4 Inter.........ccccccoeevevvecivnvenieenienne. 69
Table 7-4 — Specification of default scaling lists Default 8x8 Intra and Default 8x8 Inter..........ccccccevvverierienenceennenns 70
Table 7-5 — Meaning of PriMary PIC EYPE ...ccueeueeuerieieieierte et et ettt et e e et e te et eteeaeeseessestesteabeseeaseeaeeseeneansessessesaeeneaneans 77
Table 7-6 — Name ass0Ciation t0 SHICE tYPE ..ouveeuiiruiiiiieiieie ettt ettt ettt e bt e te e eesste et e te et e eneeeneeeneesneennes 80
Table 7-7 — reordering_of pic nums_idc operations for reordering of reference picture lists..........ccccoverenerenenicrenenns 85
Table 7-8 — Interpretation of adaptive ref pic_marking mode flag...........ccceeviiiiirienieiicieceeeece e 87
Table 7-9 — Memory management control operation (memory management_control operation) values....................... 88
Table 7-10 — Allowed collective macroblock types for SHICE tyPe......cc.eeruiriirieriiiieie et 90
Table 7-11 — Macroblock tyPes fOr T SIICESeeuieriiiieiiiie ettt ettt ettt ee s e se et e enteensesnsessnesseennas 91
Table 7-12 — Macroblock type with value 0 fOr SISHCESiecviiiiiieiieiiciecie ettt e e e ve e seae e 92
Table 7-13 — Macroblock type values 0 to 4 for P and SP SHCESoouiieiiiiiiiieieeeeee et 93
Table 7-14 — Macroblock type values 0 t0 22 fOr B SHCES......eoiiiuieiieiieieeiietieeee et 94
Table 7-15 — Specification of CodedBlockPatternChroma ValUes............c.eecveriieriierieriieiieeiere e 96
Table 7-16 — Relationship between intra_chroma pred mode and spatial prediction modes............ccevveeerereiereereennenne. 97

ITU-T Rec. H.264 (11/2007) XV

Table 7-17 — Sub-macroblock types in P macroblOCKS.coiiiiiiiiiieee e 98

Table 7-18 — Sub-macroblock types in B macroblOCKsScciiiiiiiiiiiiieeeeee e 99
Table 8-1 — Refined SIice Sroup MAP tYPCeevereieriieiieieeieeteete sttt ete et et et te et e teeaessaesseesseaseessesseesseenseensennsessnenseens 108
Table 8-2 — Specification of Intradx4PredMode[luma4x4Blkldx | and associated names.............cceevereerieerreeverenenne. 123
Table 8-3 — Specification of Intra8x8PredMode[luma8x8BIkIdx] and associated names.............cceceevveevrreveeeenreennens 130
Table 8-4 — Specification of Intral 6x16PredMode and associated NAMEScceceeruerrieriirieriee e 137
Table 8-5 — Specification of Intra chroma prediction modes and associated NAMES..........cccevererererieienienieneneneneene 140
Table 8-6 — Specification of the Variable COIPIC..........cieiiiriieiieiecieeeie ettt eetaesbe e beenseesaesnees 148
Table 8-7 — Specification of PICCOAINZSLIUCT(X) .ueeuieieieiiriieieeie ettt ettt ettt st ebe et ese e eeeeeseeeas 148
Table 8-8 — Specification of mbAddrCol, yM, and VertMvScaleccieiiriiiieiieeee e 150
Table 8-9 — Assignment of prediction Utilization flags..........cceccveriiriieiiiiieieeeee et seeens 152
Table 8-10 — Derivation of the vertical component of the chroma vector in field coding modec.ccoceverirircennene. 158
Table 8-11 — Differential full-sample Tuma 10CAtIONScceevvieiiriieieiieie e eesae s steeseesbeeneas 163
Table 8-12 — Assignment of the luma prediction sample predPartLX [Xp, YL] -ceoeeeeeeereeneneneneie et 164
Table 8-13 — Specification of mapping of idx to ¢;; for zig-zag and field scan.............ccccocoovviiiiiiiis 174
Table 8-14 — Specification of mapping of idx to c¢;; for 8x8 zig-zag and 8x8 field scan.............ccoceevvviiiiiiiiinns 175
Table 8-15 — Specification of QP as a function Of qP)........ccceviiriiiiiiiieiceee e 176
Table 8-16 — Derivation of offset dependent threshold variables o' and 8! from indexA and indexB............c.ccceeveevee. 202
Table 8-17 — Value of variable t'cy as a function of indexA and DSooooviiiiiiii oo 204
Table 9-1 — Bit strings with “prefix” and “suffix” bits and assignment to codeNum ranges (informative).................... 206
Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)..........cc.ccoceeeenene. 206
Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)............ 207
Table 9-4 — Assignment of codeNum to values of coded block pattern for macroblock prediction modes 207
Table 9-5 — coeff _token mapping to TotalCoeff(coeff token) and TrailingOnes(coeff token)..........cccevverrerverennnne. 212
Table 9-6 — Codeword table for level prefix (INfOrmative)........ooieieieieieee e 215
Table 9-7 — total zeros tables for 4x4 blocks with tZVIcINdeX 1 t0 7ooovieiieiiiiieieeee e 216
Table 9-8 — total zeros tables for 4x4 blocks with tzVIcIndeX 8 t0 15 ...cc.ieiiiiiiieieece e 217
Table 9-9 — total_zeros tables for chroma DC 2X2 and 2X4 DIOCKScoviiriiiiiiiiiiiereecceeeeeeeee e 217
Table 9-10 — Tables fOr TUN DETOTEcuiiiiiier ettt ettt st et et s ee bt st ene e e enaenaeseeenas 218
Table 9-11 — Association of ctxldx and syntax elementsfor each dicetypein theinitialisation process.............. 220
Table 9-12 — Values of variables m and n for ctxIdX from 0 t0 10.......cccooiriririnininiiiicieeeee e 221
Table 9-13 — Values of variables m and n for ctxIdx from 11 10 23ccccoviioininieiininieiricneecre s 222
Table 9-14 — Values of variables m and n for ctxIdx from 24 10 39ccviviininiiiniincncreeeee e 222
Table 9-15 — Values of variables m and n for ctxIdx from 40 t0 53ccooiriiiniiiiiceeeeeee e 222
Table 9-16 — Values of variables m and n for ctxIdx from 54 to 59, and 399 t0 401ccveeioieeieeeieeeeeee e, 223
Table 9-17 — Values of variables m and n for ctxIdx from 60 t0 69.........c.ccecvvirieinineininicineeeeeceeeeeeeeees 223
Table 9-18 — Values of variables m and n for ctxIdx from 70 t0 104ccccoveiririiiininiiininncrerccreeeeseeee e 224
Table 9-19 — Values of variables m and n for ctxIdx from 105 t0 165.....cc.coceviriiiriiiiiiiiiieeeecccee e 225
Table 9-20 — Values of variables m and n for ctxIdX from 166 t0 226........ccccoerieririeiinieniinienineneeeeeeteeeeese e 226
Table 9-21 — Values of variables m and n for ctxIdx from 227 t0 275c.cccccvvimiecinineininicirecereeeeereeeeseee s 227

Xvi ITU-T Rec. H.264 (03/2005)

Table 9-22 — Values of variables m and n for ctXIAX from 277 10 337 c..veiioiiiieeee et 228

Table 9-23 — Values of variables m and n for ctxIdx from 338 t0 398c..coiiiriiiriieiiicc e 229
Table 9-24 — Values of variables m and n for ctxIdx from 402 t0 459cccooviriririiiiiiiieeeeeeee e 230
Table 9-25 — Values of variables m and n for ctxIdx from 460 t0 483ccoirieirineiinineireceree s 231
Table 9-26 — Values of variables m and n for ctxIdx from 484 t0 571cccoerieiriniininiinceeneere st 231
Table 9-27 — Values of variables m and n for ctxIdx from 572 t0 659cc.cceviriiiriieiiiiiieeeeeeecee e 233
Table 9-28— Values of variables m and n for ctxIdx from 660 t0 717ccooeririririiiiiiiineneeeeeeeeeee e 235
Table 9-29— Values of variables m and n for ctxIdx from 718 t0 775 ...cccoivieirineirinciiicereerce s 236
Table 9-30 — Values of variables m and n for ctxIdx from 776 t0 863coeceririeiriniiiiniiiencnencese et 237
Table 9-31 — Values of variables m and n for ctxIdx from 864 t0 951cccoiiiriiiiiiiiiicieeecee e 239
Table 9-32 — Values of variables m and n for ctxIdx from 952 t0 1011 ...coooiriiiiiiiiiiiiii e 241
Table 9-33 — Values of variables m and n for ctxIdx from 1012 t0 1023cocoriririiiiiiiiiiereereeeeeeeeeee e 242
Table 9-34 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffset............c............ 243
Table 9-35 — Bin string of the unary binarization (InfOrmative)...........coecereriririinieneinenceneee e 246
Table 9-36 — Binarization for macroblock types in I SIICEScceeueeuerieiiiiriinininnceeeeceeee e 248
Table 9-37 — Binarization for macroblock types in P, SP, and B SIICES.......ccccoceriririiiiiiiniiiininenceeccccceeeee 249
Table 9-38 — Binarization for sub-macroblock types in P, SP, and B SlICES.........cccvevveirinieineiiincieicereeeeee 250
Table 9-39 — Assignment of ctxIdxInc to binldx for all ctxIdxOffset values except those related to the syntax elements

coded_block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl................... 252
Table 9-40 — Assignment of ctxldxBlockCatOffset to ctxBlockCat for syntax elements coded block flag,

significant _coeff flag, last significant coeff flag, and coeff abs level minusl.........cccooeiiiiiiiiiiiiiiinennnne, 253
Table 9-41 — Specification of ctxIdxInc for specific values of ctxIdxOffset and binldX.........c.ccecevereririieiinincncnene. 261
Table 9-42 — Specification of ctxBlockCat for the different bloCKSccevieriiiiiiiiirieiceeeeeee e 262
Table 9-43 — Mapping of scanning position to ctxIdxInc for ctxBlockCat == 5,9, 0r 13coociiiiiiiiiiiieeee, 263
Table 9-44 — Specification of rangeTabLPS depending on pStateldx and qCodIRangeldX...........cceocveveieiininncencnnnene 267
Table 9-45 — State transition tADIEcc.cooiiiiiriiiiiicereee ettt 268
Table A-1 — LeVEl lIMIESceeuiriiieiiicieirtce ettt ettt ettt ettt ettt b et ea e n et b nens 283
Table A-2 — Specification of cpbBrVclFactor and cpbBrNalFactor.........c.cccvieiiiieiieiiieie et 286
Table A-3 — Baseline profile LeVel IIMILScc.eeuirieiieiee ettt ettt st esae e teenteeneesseenneens 286
Table A-4 — Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra,

and CAVLC 4:4:4 Intra profile 1eVel HMILSceevieriieiieeiieieiee ettt ettt et seae e e seenseensesnnes 287
Table A-5 — Extended profile 1evel TIMItS..........ccueoiiiiieiiieie ettt st et e sseenseensessnenneens 288
Table A-6 — Maximum frame rates (frames per second) for some example frame SiZes.........ccceeeveviereereeriercrereenneenne. 288
Table D-1 — INterpretation Of PIC SEIUCTeo.iiuiitiiieieieiee ettt ettt e ettt et eee e st et e te st et e beseeebeeseeneeneensensesseeas 317
Table D-2 — Mapping of Ct_type tO SOUICE PICTUIE SCANeeueerueereieriieieeieetiesteenteeteeneesseesseesseeneesneesseesseesseeseensesseasseens 318
Table D-3 — Definition of COUNtING_ tYPE VAIUESccuieiiiieiiieriieieeie e ste sttt te et e e etesaeseaesseesseeseenseensesssenseens 318
Table D-4 — scene _transition tYPE VAIUESc.eiveiieriieiieiieeeeeeste et ereeeestte e esteesbessaesseesseesseesseesseessesssesssesseesseessensees 325
Table D-5 — MOAEL 1 VAIUES.....c.eouiiuieeieieeete ettt ettt ettt e st e bt e ee e bt et ese et et e beseeebeeseeneeneensesessenas 332
Table D-6 — blending_ mode 1 VAIUESooiiiieiieiieie ettt ettt ettt et sseesseesaeesee e et enteeneesneanneans 334
Table D-7 — filter Nint t¥Pe VAIUESooieiieiieiieieceeee ettt ettt et e et essaesseesseensesnnesseesseenseensesnsensaansenns 340
Table E-1 — Meaning of sample aspect 1atio INAICALOTccuieieeierieriieieeieseesieeteetesee e eaeesseeeesseesenesseesseeseessesnnas 346

ITU-T Rec. H.264 (11/2007) xvii

Table E-2 — Meaning of VIAE0 fOIMAL..........ccuiiiiiiiiiiieeeeee ettt ettt st et s e e bt et ene et e aenbeseeenas 347

Table E-3 — COLOUL PIIMATIESe.eeitieitieieeieeiie ettt ettt ettt ce bt et e et st e sat et e et e eaeeese e st anteenseeneeensesneesneesaeenseenseeneenseanseans 348
Table E-4 — Transfer CharaCteriStiCScceiriieiriiiiinieieiereceeteet sttt ettt ettt et s 349
Table E-5 — Matrix COSTIICIENESc.evviieiiriiiciiitiicirteeerct ettt ettt sttt sttt b et sa s 352
Table E-6 — Divisor for computation 0f At gpn(1) cveveeiiiiiiiiiiiiiiiiccc e 354
Table G-1 — Name association to slice_type for NAL units with nal_unit_type equal to 20...........ceccveiiniinieiininenne 393
Table G-2 — Memory management control operation (memory_management _control operation) values..................... 401
Table G-3 — Allowed collective macroblock types for SHICE tYPe. ...ocvirieriiriiiiiiieeieeeee ettt 403
Table G-4 — Macroblock types fOr EL SIICES.eeiiiiiiiiieiietieite ettt sttt b et ene e e e e 403
Table G-5 — Scale values ¢S for transform coefficient level SCAlINGc.oeoverieiiiiieieee e 458
Table G-6 — Macroblock type predictors MbTYPEILPIed.ccooieiiiiiiiiieieieeee et 475
Table G-7 — Sub-macroblock type predictors subMbTypelLPred[mbPartldx J.......cccccvevieviieciiniinieeeece e, 475
Table G-8 — 16-phase luma interpolation filter for resampling in Intra_Base predictionccceceeeieneienencncneeenne. 483
Table G-9 —Mapping of (nX, nY) to coeffTokenldX and VICE VEI Scccooueoueeuieeeeeeeeeeeeeeeeeeeeeee e, 505
Table G-10 - Association of ctxIdx and syntax elements for each slice type in the initialisation process...................... 508
Table G-11 - Values of variables m and n for ctxIdx from 1024 t0 1026........c.ccooueciririeirinieineieinereeneeeeseeeeeneees 508
Table G-12 - Values of variables m and n for ctxIdx from 1027 t0 1029........ccoeviiiniriiinicinineneneenceeeseeee e 508
Table G-13 - Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffsetc.ccoc..... 509
Table G-14 - Assignment of ctxIdxInc to binldx for the ctxIdxOffset values related to the syntax elements

base_mode flag and residual prediction flag..........ccocveeieiiiiieicieiieret e e e 510
Table G-15 — Scalable Baseline profile IeVel lIMILSccoeciiriirieiieiieieciereese ettt esae e sreeseesaeeenas 516
Table G-16 — Specification of cpbBrVclFactor and cpbBrNalFaCtOr..........cc.veviiiiiieiiciececceeece e 517

Xviii ITU-T Rec. H.264 (03/2005)

Foreword

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view
to standardising telecommunications on a world-wide basis. The World Telecommunication Standardization Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards
are prepared on a collaborative basis with ISO and IEC.

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialised system for world-wide standardisation. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organisation to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual
interest. Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take
part in the work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a
vote.

This Recommendation | International Standard was prepared jointly by ITU-T SG 16 Q.6, also known as VCEG (Video
Coding Experts Group), and by ISO/IEC JTC 1/SC 29/WG 11, also known as MPEG (Moving Picture Experts Group).
VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s)
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish
standards for coding of moving pictures and associated audio for various applications such as digital storage media,
distribution, and communication.

In this Recommendation | International Standard Annexes A through E and G contain normative requirements and are
an integral part of this Recommendation | International Standard.

ITU-T Rec. H.264 (11/2007) Xix

| TU-T Recommendation H.264

Advanced video coding for generic audiovisual services

0 I ntroduction

This clause does not form an integral part of this Recommendation | International Standard.

0.1 Prologue
This subclause does not form an integral part of this Recommendation | International Standard.

As the costs for both processing power and memory have reduced, network support for coded video data has
diversified, and advances in video coding technology have progressed, the need has arisen for an industry standard for
compressed video representation with substantially increased coding efficiency and enhanced robustness to network
environments. Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture
Experts Group (MPEG) formed a Joint Video Team (JVT) in 2001 for development of a new
Recommendation | International Standard.

0.2 Purpose
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard was developed in response to the growing need for higher compression
of moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting,
internet streaming, and communication. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments. The use of this Recommendation | International Standard
allows motion video to be manipulated as a form of computer data and to be stored on various storage media,
transmitted and received over existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

CATV Cable TV on optical networks, copper, etc.

DBS Direct broadcast satellite video services

DSL Digital subscriber line video services

DTTB Digital terrestrial television broadcasting

ISM Interactive storage media (optical disks, etc.)

MMM Multimedia mailing

MSPN Multimedia services over packet networks

RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance

SSM Serial storage media (digital VTR, etc.)

04 Publication and versions of this specification
This subclause does not form an integral part of this Recommendation | International Standard.

This specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving
Picture Experts Group. It is published as technically-aligned twin text in both organizations ITU-T and ISO/IEC.

ITU-T Rec. H.264 (11/2007) 1

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 1 refers to the first approved version of this Recommendation |
International Standard. Version 1 was approved by ITU-T on 30 May 2003. The first published version in ISO/IEC
corresponded to version 1.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 2 refers to the integrated text containing the corrections specified in the
first technical corrigendum. The first fully-published version in the ITU-T was version 2 as approved by ITU-T on
7 May 2004, due to the development of the corrigendum during the publication process. Version 2 was also published in
integrated form by ISO/IEC.

ITU-T Rec.H.264 | ISO/IEC 14496-10 version 3 refers to the integrated text containing both the first technical
corrigendum (2004) and the first amendment, which is referred to as the "Fidelity range extensions". Version 3 was
approved by ITU-T on 1 March 2005.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 4 refers to the integrated text containing the first technical corrigendum
(2004), the first amendment (the "Fidelity range extensions"), and an additional technical corrigendum (2005).
Version 4 was approved by ITU-T on 13 September 2005. In both ITU-T and ISO/IEC, the next complete published
version after version 2 was version 4.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 5 refers to the integrated version 4 text with its specification of the High
4:4:4 profile removed.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 6 refers to the integrated version 5 text after its amendment to support
additional colour space indicators. In the ITU-T, the changes for versions 5 and 6 were approved on 13 June 2006 and
were published as a single amendment.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 7 refers to the integrated version 6 text after its amendment to define
five new profiles intended primarily for professional applications (the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles) and two new types of supplemental enhancement information
(SEI) messages (the post-filter hint SEI message and the tone mapping information SEI message). Version 7 was
approved by ITU-T on 6 April 2007.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 8 (the current specification) refers to the integrated version 7 text after
its amendment to specify scalable video coding in three profiles (Scalable Baseline, Scalable High, and Scalable High
Intra profiles). Version 8 was approved by the ITU-T on 22 November 2007.

0.5 Profilesand levels
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profiles" and "levels". These and other related terms are formally defined
in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement
a decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

In order to deal with this problem, "levels" are specified within each profile. A level is a specified set of constraints
imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values.
Alternatively they may take the form of constraints on arithmetic combinations of values (e.g., picture width multiplied
by picture height multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.

2 ITU-T Rec. H.264 (03/2005)

0.6 Overview of the design characteristics
This subclause does not form an integral part of this Recommendation | International Standard.

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
quality. With the exception of the transform bypass mode of operation for lossless coding in the High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles, and the I PCM mode of operation in all profiles, the algorithm
is typically not lossless, as the exact source sample values are typically not preserved through the encoding and
decoding processes. A number of techniques may be used to achieve highly efficient compression. Encoding algorithms
(not specified in this Recommendation | International Standard) may select between inter and intra coding for block-
shaped regions of each picture. Inter coding uses motion vectors for block-based inter prediction to exploit temporal
statistical dependencies between different pictures. Intra coding uses various spatial prediction modes to exploit spatial
statistical dependencies in the source signal for a single picture. Motion vectors and intra prediction modes may be
specified for a variety of block sizes in the picture. The prediction residual is then further compressed using a transform
to remove spatial correlation inside the transform block before it is quantised, producing an irreversible process that
typically discards less important visual information while forming a close approximation to the source samples. Finally,
the motion vectors or intra prediction modes are combined with the quantised transform coefficient information and
encoded using either variable length codes or arithmetic coding.

Scalable video coding is specified in Annex G of this specification allowing the construction of bitstreams that contain
sub-bitstreams that conform to this specification. For temporal bitstream scalability, i.e., the presence of a sub-bitstream
with a smaller temporal sampling rate than the bitstream, complete access units are removed from the bitstream when
deriving the sub-bitstream. In this case, high-level syntax and inter prediction reference pictures in the bitstream are
constructed accordingly. For spatial and quality bitstream scalability, i.e. the presence of a sub-bitstream with lower
spatial resolution or quality than the bitstream, NAL units are removed from the bitstream when deriving the
sub-bitstream. In this case, inter-layer prediction, i.e., the prediction of the higher spatial resolution or quality signal by
data of the lower spatial resolution or quality signal, is typically used for efficient coding.

Otherwise, the coding algorithm as described in the previous paragraph is used.

0.6.1 Predictivecoding
This subclause does not form an integral part of this Recommendation | International Standard.

Because of the conflicting requirements of random access and highly efficient compression, two main coding types are
specified. Intra coding is done without reference to other pictures. Intra coding may provide access points to the coded
sequence where decoding can begin and continue correctly, but typically also shows only moderate compression
efficiency. Inter coding (predictive or bi-predictive) is more efficient using inter prediction of each block of sample
values from some previously decoded picture selected by the encoder. In contrast to some other video coding standards,
pictures coded using bi-predictive inter prediction may also be used as references for inter coding of other pictures.

The application of the three coding types to pictures in a sequence is flexible, and the order of the decoding process is
generally not the same as the order of the source picture capture process in the encoder or the output order from the
decoder for display. The choice is left to the encoder and will depend on the requirements of the application. The
decoding order is specified such that the decoding of pictures that use inter-picture prediction follows later in decoding
order than other pictures that are referenced in the decoding process.

0.6.2 Coding of progressive and interlaced video
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard specifies a syntax and decoding process for video that originated in
either progressive-scan or interlaced-scan form, which may be mixed together in the same sequence. The two fields of
an interlaced frame are separated in capture time while the two fields of a progressive frame share the same capture
time. Each field may be coded separately or the two fields may be coded together as a frame. Progressive frames are
typically coded as a frame. For interlaced video, the encoder can choose between frame coding and field coding. Frame
coding or field coding can be adaptively selected on a picture-by-picture basis and also on a more localized basis within
a coded frame. Frame coding is typically preferred when the video scene contains significant detail with limited motion.
Field coding typically works better when there is fast picture-to-picture motion.

0.6.3 Picture partitioning into macroblocks and smaller partitions
This subclause does not form an integral part of this Recommendation | International Standard.

As in previous video coding Recommendations and International Standards, a macroblock, consisting of a 16x16 block
of luma samples and two corresponding blocks of chroma samples, is used as the basic processing unit of the video
decoding process.

ITU-T Rec. H.264 (11/2007) 3

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the
quantity of data needed to represent the data for motion compensation. In this Recommendation | International Standard
the inter prediction process can form segmentations for motion representation as small as 4x4 luma samples in size,
using motion vector accuracy of one-quarter of the luma sample grid spacing displacement. The process for inter
prediction of a sample block can also involve the selection of the picture to be used as the reference picture from a
number of stored previously-decoded pictures. Motion vectors are encoded differentially with respect to predicted
values formed from nearby encoded motion vectors.

Typically, the encoder calculates appropriate motion vectors and other data elements represented in the video data
stream. This motion estimation process in the encoder and the selection of whether to use inter prediction for the
representation of each region of the video content is not specified in this Recommendation | International Standard.

0.64 Spatial redundancy reduction
This subclause does not form an integral part of this Recommendation | International Standard.

Both source pictures and prediction residuals have high spatial ~ redundancy. This
Recommendation | International Standard is based on the use of a block-based transform method for spatial redundancy
removal. After inter prediction from previously-decoded samples in other pictures or spatial-based prediction from
previously-decoded samples within the current picture, the resulting prediction residual is split into 4x4 blocks. These
are converted into the transform domain where they are quantised. After quantisation many of the transform coefficients
are zero or have low amplitude and can thus be represented with a small amount of encoded data. The processes of
transformation and quantisation in the encoder are not specified in this Recommendation | International Standard.

0.7 How to read this specification
This subclause does not form an integral part of this Recommendation | International Standard.

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics)
specifies the order to parse syntax elements from the bitstream. See subclauses 7.1-7.3 for syntactical order and see
subclause 7.4 for semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The
actual parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process)
specifies how the syntax elements are mapped into decoded samples. Throughout reading this specification, the reader
should refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through
E also form an integral part of this Recommendation | International Standard.

Annex A specifies eleven profiles (Baseline, Main, Extended, High, High 10, High 4:2:2, High 4:4:4 Predictive,
High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra), each being tailored to certain application
domains, and defines the so-called levels of the profiles. Annex B specifies syntax and semantics of a byte stream
format for delivery of coded video as an ordered stream of bytes. Annex C specifies the hypothetical reference decoder
and its use to check bitstream and decoder conformance. Annex D specifies syntax and semantics for supplemental
enhancement information message payloads. Finally, Annex E specifies syntax and semantics of the video usability
information parameters of the sequence parameter set.

Annex G specifies scalable video coding (SVC). The reader is referred to Annex G for the entire decoding process for
SVC, which is specified there with references being made to clauses 2-9 and Annexes A-E. Subclause G.10 specifies
three profiles for SVC (Scalable Baseline, Scalable High, and Scalable High Intra).

Throughout this specification, statements appearing with the preamble "NOTE -" are informative and are not an integral
part of this Recommendation | International Standard.

1 Scope

This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 video
coding.

2 Nor mative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent

4 ITU-T Rec. H.264 (03/2005)

edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

3

— ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for
non-standard facilities.

— ISO/IEC 11578:1996, Annex A, Universal Unique Identifier.
— ISO/CIE 10527:1991, Colorimetric Observers.

Definitions

For the purposes of this Recommendation | International Standard, the following definitions apply.

31

3.2

3.3

34

35

3.6

3.7

3.8

39
3.10
311

312

3.13
3.14

access unit: A set of NAL units always containing exactly one primary coded picture. In addition to the
primary coded picture, an access unit may also contain one or more redundant coded pictures, one auxiliary
coded picture, or other NAL units not containing dlices or dice data partitions of a coded picture. The
decoding of an access unit always results in a decoded picture.

AC transform coefficient: Any transform coefficient for which the frequency index in one or both
dimensions is non-zero.

adaptive binary arithmetic decoding process: An entropy decoding process that derives the values of bins
from a bitstream produced by an adaptive binary arithmetic encoding process.

adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in
this Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can
be decoded using the adaptive binary arithmetic decoding process.

alpha blending: A process not specified by this Recommendation | International Standard, in which an
auxiliary coded picture is used in combination with a primary coded picture and with other data not specified
by this Recommendation | International Standard in the display process. In an alpha blending process, the
samples of an auxiliary coded picture are interpreted as indications of the degree of opacity (or, equivalently,
the degrees of transparency) associated with the corresponding luma samples of the primary coded picture.

arbitrary dlice order (ASO): A decoding order of slices in which the macroblock address of the first
macroblock of some dlice of a slice group may be less than the macroblock address of the first macroblock of
some other preceding dice of the same slice group or, in the case of a picture that is coded using three
separate colour planes, some other preceding slice of the same slice group within the same colour plane, or in
which the slices of a dlice group of a picture may be interleaved with the dlices of one or more other slice
groups of the picture or, in the case of a picture that is coded using three separate colour planes, with the
dices of one or more other slice groups within the same colour plane.

auxiliary coded picture: A picture that supplements the primary coded picture that may be used in
combination with other data not specified by this Recommendation | International Standard in the display
process. An auxiliary coded picture has the same syntactic and semantic restrictions as a monochrome
redundant coded picture. An auxiliary coded picture must contain the same number of macroblocks as the
primary coded picture. Auxiliary coded pictures have no normative effect on the decoding process. See also
primary coded picture and redundant coded picture.

B dice: A dice that may be decoded using intra prediction or inter prediction using at most two motion
vectors and reference indices to predict the sample values of each block.

bin: One bit of a bin string.
binarization: A set of bin strings for all possible values of a syntax element.

binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin
strings.

bin string: A string of bins. A bin string is an intermediate binary representation of values of syntax el ements
from the binarization of the syntax element.

bi-predictive dice: See B dlice.

bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one
or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a
byte stream.

ITU-T Rec. H.264 (11/2007) 5

3.15
3.16

3.17

3.18

3.19

3.20

321

3.22
3.23

3.24

3.25

3.26

3.27

3.28

3.29
3.30
331
3.32

3.33

3.34

3.35

block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

bottom field: One of two fields that comprise a frame. Each row of a bottom field is spatially located
immediately below a corresponding row of a top field.

bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom
macroblock represents the samples from the region of the bottom field of the frame that lie within the spatial
region of the macroblock pair. For a frame macroblock pair, the bottom macroblock represents the samples of
the frame that lie within the bottom half of the spatial region of the macroblock pair.

broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding
order may contain serious visual artefacts due to unspecified operations performed in the generation of the
bitstream.

byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant
bit on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from
the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the
position at which it appears in a bitstream is byte-aligned.

byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

can: A term used to refer to behaviour that is allowed, but not necessarily required.

category: A number associated with each syntax element. The category is used to specify the allocation of
syntax elements to NAL units for slice data partitioning. It may also be used in a manner determined by the
application to refer to classes of syntax elements in a manner not specified in this
Recommendation | International Standard.

chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and
Cr.

NOTE - The term chroma is used rather than the term chrominance in order to avoid the implication of the use of
linear light transfer characteristics that is often associated with the term chrominance.

coded field: A coded representation of a field.
coded frame: A coded representation of a frame.

coded picture: A coded representation of a picture. A coded picture may be either a coded field or a coded
frame. Coded picture is a collective term referring to a primary coded picture or a redundant coded picture,
but not to both together.

coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in
the hypothetical reference decoder in Annex C.

coded representation: A data element as represented in its coded form.
coded dlice data partition NAL unit: A NAL unit containing a slice data partition.
coded slice NAL unit: A NAL unit containing a slice that is not a slice of an auxiliary coded picture.

coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit
followed by zero or more non-IDR access units including all subsequent access units up to but not including
any subsequent IDR access unit.

component: An array or single sample from one of the three arrays (luma and two chroma) that make up a
field or framein 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that make up a
field or frame in monochrome format.

complementary field pair: A collective term for a complementary reference field pair or a complementary
non-reference field pair.

complementary non-reference field pair: Two non-reference fields that are in consecutive access units in
decoding order as two coded fields of opposite parity where the first field is not already a paired field.

ITU-T Rec. H.264 (03/2005)

3.36

3.37

3.38
3.39

340

341
342
343

344

345

3.46

347

3.48

3.49

3.50

351

3.52

3.53

3.54

3.55

3.56

3.57
3.58

complementary reference field pair: Two reference fields that are in consecutive access units in decoding
order as two coded fields and share the same value of the frame_num syntax element, where the second field
in decoding order is not an IDR picture and does not include a memory management control operation
syntax element equal to 5.

context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an
equation containing recently decoded bins.

DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is either a decoded top field or a decoded bottom field.

decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

decoder: An embodiment of a decoding process.
decoding order: The order in which syntax elements are processed by the decoding process.

decoding process: The process specified in this Recommendation | International Standard that reads a
bitstream and derives decoded pictures from it.

direct prediction: An inter prediction for a block for which no motion vector is decoded. Two direct
prediction modes are specified that are referred to as spatial direct prediction and temporal prediction mode.

display process: A process not specified in this Recommendation | International Standard having, as its input,
the cropped decoded pictures that are the output of the decoding process.

decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International
Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and
to the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit
contains a start code prefix.

encoder: An embodiment of an encoding process.

encoding process: A process, not specified in this Recommendation | International Standard, that produces a
bitstream conforming to this Recommendation | International Standard.

field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field and a bottom
field.

field macroblock: A macroblock containing samples from a single field. All macroblocks of a coded field are
field macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded
frame may be field macroblocks.

field macroblock pair: A macroblock pair decoded as two field macroblocks.

field scan: A specific sequential ordering of transform coefficients that differs from the zig-zag scan by
scanning columns more rapidly than rows. Field scan is used for transform coefficients in field macroblocks.

flag: A variable that can take one of the two possible values 0 and 1.

frame: A frame contains an array of luma samples in monochrome format or an array of luma samples and
two corresponding arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour format. A frame consists of two
fields, a top field and a bottom field.

frame macroblock: A macroblock representing samples from the two fields of a coded frame. When
macroblock-adaptive frame/field decoding is not in use, all macroblocks of a coded frame are frame
macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame
may be frame macroblocks.

frame macraoblock pair: A macroblock pair decoded as two frame macroblocks.

frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior
to an inverse transform part of the decoding process.

ITU-T Rec. H.264 (11/2007) 7

3.59

3.60

3.61

3.62

3.63

3.64

3.65
3.66

3.67

3.68

3.69

3.70

371

3.72

3.73

3.74

3.75

3.76

3.77

3.78

hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may
produce.

hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of
the input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the
conformance of a bitstream or a decoder.

| dlice: A slicethat is not an S slice that is decoded using intra prediction only.

informative: A term used to refer to content provided in this Recommendation | International Standard that is
not an integral part of this Recommendation | International Standard. Informative content does not establish
any mandatory requirements for conformance to this Recommendation | International Standard.

instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an
IDR picture.

instantaneous decoding refresh (IDR) picture: A coded picture in which all slices are | or S dlices that
causes the decoding process to mark all reference pictures as "unused for reference” immediately after
decoding the IDR picture. After the decoding of an IDR picture all following coded pictures in decoding
order can be decoded without inter prediction from any picture decoded prior to the IDR picture. The first
picture of each coded video sequence is an IDR picture.

inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

inter prediction: A prediction derived from decoded samples of reference pictures other than the current
decoded picture.

interpretation sample value: A possibly-altered value corresponding to a decoded sample value of an
auxiliary coded picture that may be generated for use in the display process. Interpretation sample values are
not used in the decoding process and have no normative effect on the decoding process.

intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.
intra prediction: A prediction derived from the decoded samples of the same decoded slice.
intradice: See | dlice.

inversetransform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values, or by which a set of transform coefficients are converted into DC transform
coefficients.

layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects
of the definition of each level being in common across different profiles. Individual implementations may,
within specified constraints, support a different level for each supported profile. In a different context, level is
the value of a transform coefficient prior to scaling.

list O (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list O (list 1).

list O (list 1) prediction: Inter prediction of the content of a dlice using a reference index pointing into
reference picturelist O (list 1).

luma: An adjective specifying that a sample array or single sample is representing the monochrome signal
related to the primary colours. The symbol or subscript used for luma is Y or L.
NOTE — The term luma is used rather than the term luminance in order to avoid the implication of the use of linear

light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead
of the symbol Y to avoid confusion with the symbol y as used for vertical location.

macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples of a picture
that has three sample arrays, or a 16x16 block of samples of a monochrome picture or a picture that is coded
using three separate colour planes. The division of a slice or a macroblock pair into macroblocks is a
partitioning.

macr oblock-adaptive frame/field decoding: A decoding process for coded frames in which some
macroblocks may be decoded as frame macroblocks and others may be decoded as field macroblocks.

ITU-T Rec. H.264 (03/2005)

3.79

3.80

381

3.82

3.83

3.84

3.85

3.86

3.87

3.88

3.89

3.90
391
3.92

3.93

3.94
3.95
3.96

3.97
3.98
3.99

macr oblock addr ess: When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left
macroblock in a picture. When macroblock-adaptive frame/field decoding is in use, the macroblock address
of the top macroblock of a macroblock pair is two times the index of the macroblock pair in a macroblock
pair raster scan of the picture, and the macroblock address of the bottom macroblock of a macroblock pair is
the macroblock address of the corresponding top macroblock plus 1. The macroblock address of the top
macroblock of each macroblock pair is an even number and the macroblock address of the bottom
macroblock of each macrablock pair is an odd number.

macr oblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (x, y). For
the top left macroblock of the picture (x,y) is equal to (0, 0). x is incremented by 1 for each macroblock
column from left to right. When macroblock-adaptive frame/field decoding is not in use, y is incremented by
1 for each macroblock row from top to bottom. When macroblock-adaptive frame/field decoding is in use, y
is incremented by 2 for each macroblock pair row from top to bottom, and is incremented by an additional 1
when a macroblock is a bottom macroblock.

macroblock pair: A pair of vertically contiguous macroblocks in a frame that is coupled for use in
macrobl ock-adaptive frame/field decoding. The division of a slice into macroblock pairs is a partitioning.

macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction for a picture that has three sample arrays or a block of
luma samples resulting from a partitioning of a macroblock for inter prediction for a monochrome picture or
a picture that is coded using three separate colour planes.

macroblock to slice group map: A means of mapping macroblocks of a picture into slice groups. The
macroblock to slice group map consists of a list of numbers, one for each coded macroblock, specifying the
slice group to which each coded macroblock belongs.

map unit to slice group map: A means of mapping slice group map units of a picture into slice groups. The
map unit to slice group map consists of a list of numbers, one for each dice group map unit, specifying the
slice group to which each coded slice group map unit belongs.

may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the
optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used
to provide emphasis.

memory management control operation: Seven operations that control reference picture marking.

motion vector: A two-dimensional vector used for inter prediction that provides an offset from the
coordinates in the decoded picture to the coordinates in a reference picture.

must: A term used in expressing an observation about a requirement or an implication of a requirement that is
specified elsewhere in this Recommendation | International Standard. This term is used exclusively in an
informative context.

NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that
data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

NAL unit stream: A sequence of NAL units.
non-paired field: A collective term for a non-paired reference field or a non-paired non-reference field.

non-paired non-reference field: A decoded non-reference field that is not part of a complementary
non-reference field pair.

non-paired reference field: A decoded reference field that is not part of a complementary reference field
pair.

non-referencefield: A field coded with nal_ref idc equal to 0.
non-reference frame: A frame coded with nal ref idc equal to 0.

non-reference picture: A picture coded with nal_ref idc equal to 0. A non-reference picture is not used for
inter prediction of any other pictures.

note: A term used to prefix informative remarks. This term is used exclusively in an informative context.
opposite parity: The opposite parity of top is bottom, and vice versa.

output order: The order in which the decoded pictures are output from the decoded picture buffer.

ITU-T Rec. H.264 (11/2007) 9

3.100

3.101

3.102
3.103

3.104
3.105

3.106

3.107
3.108

3.109
3.110

3111

3.112
3.113
3.114

3.115

3.116

3.117

3.118

3.119

3.120

3121

10

P dlice: A dice that is not an SP dlice that may be decoded using intra prediction or inter prediction using at
most one motion vector and reference index to predict the sample values of each block.

parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used
as part of the defined term quantisation parameter.

parity: The parity of a field can be top or bottom.

partitioning: The division of a set into subsets such that each element of the set is in exactly one of the
subsets.

picture: A collective term for a field or a frame.

picture parameter set: A syntax structure containing Syntax elements that apply to zero or more entire coded
pictures as determined by the pic_parameter_set_id syntax element found in each slice header.

picture order count: A variable having a value that is non-decreasing with increasing picture position in
output order relative to the previous IDR picture in decoding order or relative to the previous picture
containing the memory management control operation that marks all reference pictures as “unused for
reference”.

prediction: An embodiment of the prediction process.

prediction process: The use of a predictor to provide an estimate of the sample value or data element
currently being decoded.

predictive slice: See P slice.

predictor: A combination of specified values or previously decoded sample values or data elements used in
the decoding process of subsequent sample values or data elements.

primary coded picture: The coded representation of a picture to be used by the decoding process for a
bitstream conforming to this Recommendation | International Standard. The primary coded picture contains
all macroblocks of the picture. The only pictures that have a normative effect on the decoding process are
primary coded pictures. See also redundant coded picture.

profile: A specified subset of the syntax of this Recommendation | International Standard.
guantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.

random access: The act of starting the decoding process for a bitstream at a point other than the beginning of
the stream.

raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned
from left to right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned
from left to right.

raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is
encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax
elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload
(RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be
identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the
RBSP.

recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation
of the decoded pictures represented by the bitstream is achieved after a random access or broken link.

redundant coded picture: A coded representation of a picture or a part of a picture. The content of a
redundant coded picture shall not be used by the decoding process for a bitstream conforming to this
Recommendation | International Standard. A redundant coded picture is not required to contain all
macroblocks in the primary coded picture. Redundant coded pictures have no normative effect on the
decoding process. See also primary coded picture.

reference field: A reference field may be used for inter prediction when P, SP, and B slices of a coded field
or field macroblocks of a coded frame are decoded. See also reference picture.

reference frame: A reference frame may be used for inter prediction when P, SP, and B dices of a coded
frame are decoded. See also reference picture.

ITU-T Rec. H.264 (03/2005)

3.122
3.123

3.124

3.125

3.126

3.127

3.128

3.129
3.130

3131

3.132

3.133

3.134

3.135

3.136

3.137

3.138

reference index: An index into a reference picture list.

reference picture: A picture with nal_ref idc not equal to 0. A reference picture contains samples that may
be used for inter prediction in the decoding process of subsequent pictures in decoding order.

reference picture list: A list of reference pictures that is used for inter prediction of a P, B, or SP dlice. For
the decoding process of a P or SP dlice, there is one reference picture list. For the decoding process of a B
dlice, there are two reference picture lists.

reference picture list 0: A reference picture list used for inter prediction of a P, B, or SP dlice. All inter
prediction used for P and SP dlices uses reference picture list 0. Reference picture list 0 is one of two
reference picture lists used for inter prediction for a B slice, with the other being reference picture list 1.

reference picturelist 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1
is one of two lists of reference picture lists used for inter prediction for a B slice, with the other being
reference picture list 0.

reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter
prediction.

reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element,
are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this
Recommendation | International Standard, but may be wused in future extensions of this
Recommendation | International Standard by ITU-T | ISO/IEC.

residual: The decoded difference between a prediction of a sample or data element and its decoded value.

run: A number of consecutive data elements represented in the decoding process. In one context, the number
of zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of
transform coefficient levels generated by a zig-zag scan or a field scan. In other contexts, run refers to a
number of macroblocks.

sample aspect ratio: Specifies, for assisting the display process, which is not specified in this
Recommendation | International Standard, the ratio between the intended horizontal distance between the
columns and the intended vertical distance between the rows of the luma sample array in a frame. Sample
aspect ratio is expressed as h:v, where h is horizontal width and Vv is vertical height (in arbitrary units of spatial
distance).

scaling: The process of multiplying transform coefficient levelsby a factor, resulting in transform coefficients.

sequence parameter set: A syntax structure containing Syntax elements that apply to zero or more entire
coded video segquences as determined by the content of a seq_parameter_set id syntax element found in the
picture parameter set referred to by the pic_parameter_set_id syntax element found in each slice header.

shall: A term used to express mandatory requirements for conformance to this Recommendation |
International Standard. When used to express a mandatory constraint on the values of syntax elements or on
the results obtained by operation of the specified decoding process, it is the responsibility of the encoder to
ensure that the constraint is fulfilled. When used in reference to operations performed by the decoding
process, any decoding process that produces identical results to the decoding process described herein
conforms to the decoding process requirements of this Recommendation | International Standard.

should: A term used to refer to behaviour of an implementation that is encouraged to be followed under
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this
Recommendation | International Standard.

Sl dice: A dlicethat is coded using intra prediction only and using quantisation of the prediction samples. An
ST slice can be coded such that its decoded samples can be constructed identically to an SP slice.

skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock
is to be decoded as "skipped". This indication may be common to several macroblocks.

dlice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan within
a particular slice group. For the primary coded picture, the division of each slice group into slices is a
partitioning. Although a slice contains macroblocks or macroblock pairs that are consecutive in the raster
scan within a slice group, these macroblocks or macroblock pairs are not necessarily consecutive in the raster
scan within the picture. The macroblock addresses are derived from the first macroblock addressin a slice (as
represented in the slice header) and the macroblock to slice group map, and, when a picture is coded using
three separate colour planes, a colour plane identifier.

ITU-T Rec. H.264 (11/2007) 11

3.139

3.140

3.141
3.142

3.143
3.144

3.145

3.146

3.147

3.148

3.149
3.150
3.151
3.152
3.153

3.154

3.155

3.156

3.157

3.158

12

dice data partitioning: A method of partitioning selected syntax elements into Syntax structures based on a
category associated with each syntax element.

dlice group: A subset of the macroblocks or macroblock pairs of a picture. The division of the picture into
slice groups is a partitioning of the picture. The partitioning is specified by the macroblock to slice group

map.
dlice group map units: The units of the map unit to slice group map.

slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks
represented in the slice.

source: Term used to describe the video material or some of its attributes before encoding.

SP dlice: A dice that may be coded using intra prediction or inter prediction with quantisation of the
prediction samples using at most one motion vector and reference index to predict the sample values of each
block. An SP slice can be coded such that its decoded samples can be constructed identically to another SP
slice or an S dlice.

start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a
prefix to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning
of a new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within
NAL units by the inclusion of emulation prevention bytes.

string of data bits (SODB): A sequence of some number of bits representing Syntax elements present within
a raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most
bit is considered to be the first and most significant bit, and the right-most bit is considered to be the last and
least significant bit.

sub-macroblock: One quarter of the samples of a macroblock; i.e., an 8x8 luma block and two corresponding
chroma blocks of which one corner is located at a corner of the macroblock for a picture that has three sample
arrays or an 8x8 luma block of which one corner is located at a corner of the macroblock for a monochrome
picture or a picture that is coded using three separate colour planes.

sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples
resulting from a partitioning of a sub-macroblock for inter prediction for a picture that has three sample
arrays or a block of luma samples resulting from a partitioning of a sub-macroblock for inter prediction for a
monochrome picture or a picture that is coded using three separate colour planes.

switching | dlice: See S dlice.

switching P slice: See SP dice.

syntax element: An element of data represented in the bitstream.

syntax structure: Zero or more Syntax elements present together in the bitstreamin a specified order.

top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately
above the corresponding row of the bottom field.

top macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock
represents the samples from the region of the top field of the frame that lie within the spatial region of the
macroblock pair. For a frame macroblock pair, the top macroblock represents the samples of the frame that
lie within the top half of the spatial region of the macroblock pair.

transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding
process.

transform coefficient level: An integer quantity representing the value associated with a particular
two-dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal
unique identifiers.

unspecified: The term unspecified, when used in the clauses specifying some values of a particular Syntax
element, indicates that the values have no specified meaning in this Recommendation | International Standard
and will not have a specified meaning in the future as an integral part of this Recommendation | International
Standard.

ITU-T Rec. H.264 (03/2005)

3.159

3.160
3.161

4

Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply.

CABAC
CAVLC
CBR
CPB
DPB
DUT
FIFO
HRD
HSS
IDR
LSB
MB
MBAFF
MSB
NAL
RBSP
SEI
SODB
SVC
UUID
VBR
VCL
VLC
VUI

5

Context-based Adaptive Binary Arithmetic Coding
Context-based Adaptive Variable Length Coding
Constant Bit Rate

Coded Picture Buffer

Decoded Picture Buffer

Decoder Under Test

First-In, First-Out

Hypothetical Reference Decoder
Hypothetical Stream Scheduler
Instantaneous Decoding Refresh

Least Significant Bit

Macroblock

Macroblock-Adaptive Frame-Field Coding
Most Significant Bit

Network Abstraction Layer

Raw Byte Sequence Payload
Supplemental Enhancement Information
String Of Data Bits

Scalable Video Coding

Universal Unique Identifier

Variable Bit Rate

Video Coding Layer

Variable Length Coding

Video Usability Information

Conventions

variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to
symbols expected to be more frequent and longer bit strings to Symbols expected to be less frequent.

VCL NAL unit: A collective term for coded slice NAL units and coded slice data partition NAL units.

zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest
spatial frequency to the highest. Zig-zag scan is used for transform coefficient levels in frame macroblocks.

NOTE — The mathematical operators used in this Specification are similar to those used in the C programming language.
However, integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions
generally begin from 0.

51

Arithmetic operators

The following arithmetic operators are defined as follows.

+

Addition

Subtraction (as a two-argument operator) or negation (as a unary prefix operator)

I TU-T Rec. H.264 (11/2007)

13

* Multiplication

X Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for
superscripting not intended for interpretation as exponentiation.
/ Integer division with truncation of the result toward zero. For example, 7/4 and —7/—4 are truncated
to 1 and —7/4 and 7/—4 are truncated to —1.
+ Used to denote division in mathematical equations where no truncation or rounding is intended.
— Used to denote division in mathematical equations where no truncation or rounding is intended.
y

y
Z f (i) The summation of f(i) with i taking all integer values from x up to and including y.

i=X

X%y Modulus. Remainder of x divided by y, defined only for integers x and y with x >=0 and y > 0.

When order of precedence is not indicated explicitly by use of parenthesis, the following rules apply:

52

— multiplication and division operations are considered to take place before addition and subtraction;
— multiplication and division operations in sequence are evaluated sequentially from left to right;

— addition and subtraction operations in sequence are evaluated sequentially from left to right.

Logical operators

The following logical operators are defined as follows:

53

x && y Boolean logical "and" of x and y
x || y Boolean logical "or" of x and y
! Boolean logical "not"

x ?y:z Ifxis TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z

Relational operators

The following relational operators are defined as follows:

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to
== Equal to

1= Not equal to

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not
applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered
not to be equal to any other value.

54

Bit-wise operators

The following bit-wise operators are defined as follows:

14

& Bit-wise "and". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

Bit-wise "or". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

x>>y Arithmetic right shift of a two’s complement integer representation of x by y binary digits. This
function is defined only for positive integer values of y. Bits shifted into the MSBs as a result of the
right shift have a value equal to the MSB of x prior to the shift operation.

ITU-T Rec. H.264 (03/2005)

x <<y Arithmetic left shift of a two’s complement integer representation of x by y binary digits. This
function is defined only for positive integer values of y. Bits shifted into the LSBs as a result of the
left shift have a value equal to 0.

55 Assignment operators

The following arithmetic operators are defined as follows:
= Assignment operator.

++ Increment, i.e., X++ is equivalent to X = X + 1; when used in an array index, evaluates to the value of
the variable prior to the increment operation.

— Decrement, i.e., X—— is equivalent to X = X — 1; when used in an array index, evaluates to the value of
the variable prior to the decrement operation.

+= Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (-3) is equivalent
tox =x +(-3).

—= Decrement by amount specified, i.e., x — 3 is equivalent to x = x — 3, and x —= (-3) is equivalent
tox =x—(-3).

5.6 Range notation
The following notation is used to specify a range of values:

x =y ..z x takes on integer values starting from y to z inclusive, with X, y, and z being integer numbers.

5.7 M athematical functions

The following mathematical functions are defined as follows:

Abs(x)=) X 5 x>=0 (5-1)
-x ; x<0
Ceil(x) the smallest integer greater than or equal to x. (5-2)
Cliply(x)=Clip3(0, (1 <<BitDepthy) — 1, x) (5-3)
Cliple(x) =Clip3(0, (1 << BitDepthc) -1, x) (5-4)
X ; Z<X
Clip3(x,y,z)=3y ; z>y (5-5)

Z ; otherwise

Floor(x) the greatest integer less than or equal to x. (5-6)

(a%(d /b)) *b;, e==
InverseRasterScan(a, b, ¢, d, e) = (5-7)
(a/(d/b))*c, e==

Log2(x) returns the base-2 logarithm of x. (5-8)

Logl0(x) returns the base-10 logarithm of x. (5-9)

ITU-T Rec. H.264 (11/2007) 15

Median(x,y,z)=x+y+z—Min(x, Min(y, z)) — Max(x, Max(y,z)) (5-10)

Min(x,y)—{x > X<y (5-11)

y X>y

Max(x,y)—{x > XEY (5-12)
y 5 X<y

Round(x) = Sign(x) * Floor(Abs(x)+0.5) (5-13)

Sign(x)=) 1 3 x>=0 (5-14)
-1 ; x<0

Sqrt(x) = v/x (5-15)

5.8 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower
case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of
coded representation. The decoding process behaves according to the value of the syntax element and to the values of
previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears
in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax
structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding
process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a
lower case letter are only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE — The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions are described by their names, which are constructed as syntax element names, with left and right round
parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more
than one variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be
syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a
visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a
column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for
indexing. Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as
s[X,y] oras sy.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001'
represents an eight-bit string having only its second and its last bits equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its
second and its last bits equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any other value
different than zero.

16 ITU-T Rec. H.264 (03/2005)

5.9 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
statement 0

else if (condition 1)
statement 1

else /* informative remark on remaining condition */
statement n

may be described in the following manner:
... as follows / ... the following applies.
— If condition 0, statement 0
— Otherwise, if condition 1, statement 1

— Otherwise (informative remark on remaining condition), statement n

Each "If...Otherwise, if...Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following
applies" immediately followed by "If ... ". The last condition of the "If...Otherwise, if...Otherwise, ..." is always an
"Otherwise, ...". Interleaved "If...Otherwise, if...Otherwise, ..." statements can be identified by matching "... as follows"
or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0a && condition Ob)
statement 0

else if (condition la || condition 1b)
statement 1

else
statement n

may be described in the following manner:

... as follows / ... the following applies.
— If all of the following conditions are true, statement 0
— condition Oa
— condition 0b
— Otherwise, if any of the following conditions are true, statement 1
— condition la
— condition 1b

— Otherwise, statement n
In the text, a statement of logical operations as would be described in pseudo-code as
if(condition 0)
statement 0

if (condition 1)
statement 1

may be described in the following manner:

When condition 0, statement 0

When condition 1, statement 1

ITU-T Rec. H.264 (11/2007) 17

5.10 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable
explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable
that can either be an upper case variable or a lower case variable.

The assignment of variables is specified as follows:

— If invoking a process, variables are explicitly assigned to lower case input or output variables of the
process specification in case these do not have the same name.

— Otherwise (when the variables at the invoking and specification have the same name), assignment is
implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to
the address of the specific macroblock.

6 Sour ce, coded, decoded and output data for mats, scanning processes, and
neighbouring relationships

6.1 Bitstream formats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to
as the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit
stream format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units.
This sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the
NAL units in the NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of
bytes. The NAL unit stream format can be extracted from the byte stream format by searching for the location of the
unique start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than
use of the byte stream format are outside the scope of this Recommendation | International Standard. The byte stream
format is specified in Annex B.

6.2 Sour ce, decoded, and output picture formats
This subclause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively
pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of one or more sample arrays:
— Luma (Y) only (monochrome), with or without an auxiliary array.
— Luma and two Chroma (YCbCr or YCgCo), with or without an auxiliary array.
— Green, Blue and Red (GBR, also known as RGB), with or without an auxiliary array.

— Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX,
also known as XYZ), with or without an auxiliary array.

For convenience of notation and terminology in this specification, the variables and terms associated with these arrays
are referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of
the actual colour representation method in use. The actual colour representation method in use can be indicated in
syntax that is specified in Annex E. The (monochrome) auxiliary arrays, which may or may not be present as auxiliary
pictures in a coded video sequence, are optional for decoding and can be used for such purposes as alpha blending.

The variables SubWidthC, and SubHeightC are specified in Table 6-1, depending on the chroma format sampling
structure, which is specified through chroma format idc and separate colour plane flag. An entry marked as "-" in
Table 6-1 denotes an undefined value for SubWidthC or SubHeightC. Other values of chroma format_idc, SubWidthC,
and SubHeightC may be specified in the future by ITU-T | ISO/IEC.

18 ITU-T Rec. H.264 (03/2005)

Table 6-1 — SubWidthC, and SubHeightC values derived from chroma_format_idc and
separate _colour_plane flag

chroma_format_idc |separate colour_plane flag ChromaFormat |SubWidthC |SubHeightC
0 0 monochrome - -
1 0 4:2:0 2 2
2 0 4:2:2 2 1
3 0 4:4:4 1 1
3 1 4:4:4 - -

In monochrome sampling there is only one sample array, which is nominally considered the luma array.
In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.
In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.

In 4:4:4 sampling, depending on the value of separate_colour plane flag, the following applies.

— If separate_colour plane flag is equal to 0, each of the two chroma arrays has the same height and width as the
luma array.

— Otherwise (separate _colour plane flag is equal to 1), the three colour planes are separately processed as
monochrome sampled pictures.

The width and height of the luma sample arrays are each an integer multiple of 16. In coded video sequences using
4:2:0 chroma sampling, the width and height of chroma sample arrays are each an integer multiple of 8. In coded vide
sequences using 4:2:2 sampling, the width of the chroma sample arrays is an integer multiple of 8 and the height is an
integer multiple of 16. The height of a luma array that is coded as two separate fields or in macroblock-adaptive frame-
field coding (see below) is an integer multiple of 32. In coded video sequences using 4:2:0 chroma sampling, the height
of each chroma array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see below) is an
integer multiple of 16. The width or height of pictures output from the decoding process need not be an integer multiple
of 16 and can be specified using a cropping rectangle.

The syntax for the luma and (when present) chroma arrays are ordered such when data for all three colour components
is present, the data for the luma array is first, followed by any data for the Cb array, followed by any data for the Cr
array, unless otherwise specified.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to
the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set
is half that of frames coded referring to the same sequence parameter set (see below).

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video
sequence is in the range of 8 to 14, and the number of bits used in the luma array may differ from the number of bits
used in the chroma arrays.

When the value of chroma format idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in frames are shown in Figure 6-1. Alternative chroma sample relative locations may be indicated in
video usability information (see Annex E).

ITU-T Rec. H.264 (11/2007) 19

X X X X X X ¢
O O O

X X X X X X

X X X X X X

O O O Frame
X X X X X X

X X X X X X

O O O

X X X X X X

Guide:
X — Location of luma sample
O — Location of chroma sample

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samplesin a frame

A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded
field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary
combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller
regions of a coded frame to be coded either as a frame or field region, by use of macroblock-adaptive frame-field
coding.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time,
or are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are
interleaved. The first (i.e., top), third, fifth, etc., rows of a decoded frame are the top field rows. The second, fourth,
sixth, etc., rows of a decoded frame are the bottom field rows. A top field consists of only the top field rows of a
decoded frame. When the top field or bottom field of a decoded frame is used as a reference field (see below) only the
even rows (for a top field) or the odd rows (for a bottom field) of the decoded frame are used.

When the value of chroma format idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in top and bottom fields are shown in Figure 6-2. The nominal vertical sampling relative locations of
the chroma samples in a top field are specified as shifted up by one-quarter luma sample height relative to the
field-sampling grid. The vertical sampling locations of the chroma samples in a bottom field are specified as shifted
down by one-quarter luma sample height relative to the field-sampling grid. Alternative chroma sample relative
locations may be indicated in the video usability information (see Annex E).

NOTE - The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the
full-frame sampling grid as shown in Figure 6-1.

20 ITU-T Rec. H.264 (03/2005)

OX
OX
OX

Top

Field O O “Fleld"
X X X

E() X é() X E() X
X X X X X X
. ®e . ®e
] L] ° L[]
L] ° L]
Guide: Guide:
X — Location of luma sample X — Location of luma sample
O — Location of chroma sample O — Location of chroma sample

Figure 6-2 —Nominal vertical and horizontal sampling locations of 4:2:0 samplesin top and bottom fields

When the value of chroma_format idc is equal to 2, the chroma samples are co-sited with the corresponding luma
samples and the nominal locations in a frame and in fields are as shown in Figure 6-3 and Figure 6-4, respectively.

RX B X B X e
® X B X ® X
® X B X ® X
B X ® X8 X
B X B X B X
B X B X B X

Guide:
X — Location of luma sample
O — Location of chroma sample

Figure 6-3—Nominal vertical and horizontal locations of 4:2:2 luma and chroma samplesin a frame

ITU-T Rec. H.264 (11/2007) 21

B X ® X B X

B X & X & X

Top Bottom
Field Field

B X & X & X

. ®e ° ®e
L] °) L]
L] . L]
Guide: Guide:
X — Location of luma sample X — Location of luma sample
O — Location of chroma sample O — Location of chroma sample

Figure 6-4 —Nominal vertical and horizontal sampling locations of 4:2:2 samplestop and bottom fields

When the value of chroma format idc is equal to 3, all array samples are co-sited for all cases of frames and fields and
the nominal locations in a frame and in fields are as shown in Figure 6-5 and 6-6, respectively.

BRRR R B -
B R R R R
B R R R
B RRR R
B R R
B R R R

Guide:
X — Location of luma sample
O — Location of chroma sample

Figure 6-5—Nominal vertical and horizontal locations of 4:4:4 luma and chroma samplesin a frame

22 ITU-T Rec. H.264 (03/2005)

BRI R R e
R
BRI

Top Bottom
Field Field

RN
O T T S S R
02 I R B S 2

° ° b .
] (] °]
L] . L]
Guide: Guide:
X — Location of luma sample X — Location of luma sample
O — Location of chroma sample O — Location of chroma sample

Figure 6-6 — Nominal vertical and horizontal sampling locations of 4:4:4 samplestop and bottom fields

The samples are processed in units of macroblocks. The luma array for each macroblock is 16 samples in both width
and height. The variables MbWidthC and MbHeightC, which specify the width and height, respectively, of the chroma
arrays for each macroblock, are derived as follows.

— If chroma_format_idc is equal to 0 (monochrome) or separate colour plane flag is equal to 1, MbWidthC and
MbHeightC are both equal to 0.

— Otherwise, MbWidthC and MbHeightC are derived as

MbWidthC = 16 / SubWidthC (6-1)

MbHeightC = 16 / SubHeightC (6-2)

6.3 Spatial subdivision of picturesand slices

This subclause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A
slice is a sequence of macroblocks, or, when macroblock-adaptive frame/field decoding is in use, a sequence of
macroblock pairs.

Each macroblock is comprised of one 16x16 luma array and, when the chroma sampling format is not equal to 4:0:0 and
separate_colour_plane flag is equal to 0, two corresponding chroma sample arrays. When separate_colour_plane flag
is equal to 1, each macroblock is comprised of one 16x16 luma or chroma sample array. When macroblock-adaptive
frame/field decoding is not in use, each macroblock represents a spatial rectangular region of the picture. For example, a
picture may be divided into two slices as shown in Figure 6-7.

When a picture is coded using three separate colour planes (separate_colour plane flag is equal to 1), a slice contains
only macroblocks of one colour component being identified by the corresponding value of colour plane id, and each
colour component array of a picture consists of slices having the same colour plane id value. Coded slices with
different values of colour plane id within an access unit can be interleaved with each other under the constraint that for
each value of colour plane id, the coded slice NAL units with that value colour plane id shall be in the order of
increasing macroblock address for the first macroblock of each coded slice NAL unit.

ITU-T Rec. H.264 (11/2007) 23

Figure 6-7 — A picturewith 11 by 9 macroblocksthat is partitioned into two slices

When macroblock-adaptive frame/field decoding is in use, the picture is partitioned into slices containing an integer
number of macroblock pairs as shown in Figure 6-8. Each macroblock pair consists of two macroblocks.

AN

A macroblock pair

Figure 6-8 — Partitioning of the decoded frameinto macroblock pairs

6.4 I nver se scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes
for neighbours.

6.4.1 Inversemacroblock scanning process
Input to this process is a macroblock address mbAddr.

Output of this process is the location (X,y) of the upper-left luma sample for the macroblock with address mbAddr
relative to the upper-left sample of the picture.

24 ITU-T Rec. H.264 (03/2005)

The inverse macroblock scanning process is specified as follows.

6.4.2

If MbaffFrameFlag is equal to 0,

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 0)

y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 1)

Otherwise (MbaffFrameFlag is equal to 1), the following applies.

xO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 0)

yO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 1)

Depending on the current macroblock the following applies.

- If the current macroblock is a frame macroblock

x =x0

y=yO + (mbAddr%2) * 16

- Otherwise (the current macroblock is a field macroblock),

x=x0

y=yO + (mbAddr % 2)

I nver se macr oblock partition and sub-macroblock partition scanning process

(6-3)

(6-4)

(6-5)

(6-6)

(6-7)

(6-8)

(6-9)

(6-10)

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-9. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles
refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or
inverse sub-macroblock partition scan.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width
and height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-13, 7-14, 7-17, and 7-18.
MbPartWidth() and MbPartHeight() are set to appropriate values for each macroblock, depending on the macroblock
type. SubMbPartWidth() and SubMbPartHeight() are set to appropriate values for each sub-macroblock of a
macroblock with mb_type equal to P_8x8, P_8x8ref0, or B_8x8, depending on the sub-macroblock type.

I TU-T Rec. H.264 (11/2007)

25

Macroblock
partitions

1 macroblock partition of
16*16 luma samples and
associated chroma samples

2 macroblock partitions of
16*8 luma samples and
associated chroma samples

2 macroblock partitions of
8*16 luma samples and
associated chroma samples

4 sub-macroblocks of
8*8 luma samples and
associated chroma samples

Sub-macroblock
partitions

1 sub-macroblock partition
of 8*8 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 8*4 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 4*8 luma samples and
associated chroma samples

4 sub-macroblock partitions
of 4*4 luma samples and
associated chroma samples

Figure 6-9 —Macroblock partitions, sub-macraoblock partitions, macroblock partition scans, and sub-macroblock
partition scans

64.2.1

I nver se macr oblock partition scanning process

Input to this process is the index of a macroblock partition mbPartIdx.

Output of this process is the location (X,y) of the upper-left luma sample for the macroblock partition mbPartldx
relative to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by

x = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16,0)

y = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 1)

6.4.2.2

I nver se sub-macroblock partition scanning process

(6-11)

(6-12)

Inputs to this process are the index of a macroblock partition mbPartldx and the index of a sub-macroblock partition

subMbPartIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the sub-macroblock partition
subMbPartldx relative to the upper-left sample of the sub-macroblock.

The inverse sub-macroblock partition scanning process is specified as follows.

— Ifmb typeis equal to P_8x8, P 8x8ref0, or B 8x8,

x = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),

SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 0)

(6-13)

y = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),

— Otherwise,

SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 1)

x = InverseRasterScan(subMbPartldx, 4, 4, 8,0)

y = InverseRasterScan(subMbPartldx, 4,4, 8, 1)

26

ITU-T Rec. H.264 (03/2005)

(6-14)

(6-15)

(6-16)

6.4.3 Inverse4x4luma block scanning process

Input to this process is the index of a 4x4 luma block luma4x4BlkIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the 4x4 luma block with index

luma4x4BIlkldx relative to the upper-left luma sample of the macroblock.

Figure 6-10 shows the scan for the 4x4 luma blocks.

of1]4]5
2(3]16 |7
8 9]12]13
10 | 11 | 14 | 15

Figure 6-10 — Scan for 4x4 luma blocks

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4BlkIdx / 4, 8, 8, 16, 0) + InverseRasterScan(luma4x4Blkldx % 4, 4, 4, 8,0)

y = InverseRasterScan(luma4x4BlkIdx / 4, 8, 8, 16, 1) + InverseRasterScan(luma4x4Blkldx % 4, 4,4, 8, 1)

6.4.4 Inverse4x4 Ch or Cr block scanning processfor ChromaArrayTypeequal to 3

This process is only invoked when ChromaArrayType is equal to 3.

(6-17)

(6-18)

The inverse 4x4 chroma block scanning process is identical to inverse 4x4 luma block scanning process as specified in
subclause 6.4.3 when substituting the term “luma” with the term “Cb” or the term “Cr”, and substituting the term
“luma4x4Blkldx” with the term “cb4x4BlkIdx” or the term “cr4x4BlkIdx” in all places in subclause 6.4.3.

6.4.5 Inverse8x8luma block scanning process

Input to this process is the index of an 8x8 luma block luma8x8BIkIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the 8x8 luma block with index

luma8x8BIkIdx relative to the upper-left luma sample of the macroblock.

Figure 6-11 shows the scan for the 8x8 luma blocks.

Figure 6-11 — Scan for 8x8 luma blocks

The inverse 8x8 luma block scanning process is specified by

x = InverseRasterScan(luma8x8Blkldx, 8, 8, 16, 0)

y = InverseRasterScan(luma8x8BIkldx, 8, 8, 16, 1)

I TU-T Rec. H.264 (11/2007)

(6-19)

(6-20)

27

6.4.6 Inverse8x8Cbh or Cr block scanning processfor ChromaArrayTypeequal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The inverse 8x8 chroma block scanning process is identical to inverse 8x8 luma block scanning process as specified in
subclause 6.4.5 when substituting the term “luma” with the term “Cb” or the term “Cr”, and substituting the term
“luma8x8Blkldx” with the term “cb8x8Blkldx” or the term “cr8x8BlkIdx” in all places in subclause 6.4.5.

6.4.7 Derivation process of the availability for macroblock addresses

Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.
NOTE - The meaning of availability is determined when this process is invoked.

The macroblock is marked as available, unless one of the following conditions is true in which case the macroblock is
marked as not available:

— mbAddr<0
— mbAddr > CurrMbAddr
— the macroblock with address mbAddr belongs to a different slice than the macroblock with address CurrMbAddr

6.4.8 Derivation processfor neighbouring macroblock addresses and their availability
This process can only be invoked when MbaffFrameFlag is equal to 0.

The outputs of this process are:

— mbAddrA: the address and availability status of the macroblock to the left of the current macroblock.
— mbAddrB: the address and availability status of the macroblock above the current macroblock.

— mbAddrC: the address and availability status of the macroblock above-right of the current macroblock.

— mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6-12 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and
mbAddrD relative to the current macroblock with CurrMbAddr.

mbAddrD | mbAddrB mbAddrC

mbAddrA | CurrMbAddr

Figure 6-12 — Neighbouring macroblocksfor a given macroblock

Input to the process in subclause 6.4.7 is mbAddrA = CurrMbAddr— 1 and the output is whether the macroblock
mbAddrA is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthInMbs is equal
to 0.

Input to the process in subclause 6.4.7 is mbAddrB = CurrMbAddr — PicWidthInMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in subclause 6.4.7 is mbAddrC = CurrMbAddr — PicWidthInMbs + 1 and the output is whether the
macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

28 ITU-T Rec. H.264 (03/2005)

Input to the process in subclause 6.4.7 is mbAddrD = CurrMbAddr — PicWidthInMbs - 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
CurrMbAddr % PicWidthInMbs is equal to 0.

6.4.9 Derivation processfor neighbouring macroblock addresses and their availability in MBAFF frames
This process can only be invoked when MbaffFrameFlag is equal to 1.

The outputs of this process are

— mbAddrA: the address and availability status of the top macroblock of the macroblock pair to the left of the current
macroblock pair.

— mbAddrB: the address and availability status of the top macroblock of the macroblock pair above the current
macroblock pair.

— mbAddrC: the address and availability status of the top macroblock of the macroblock pair above-right of the
current macroblock pair.

— mbAddrD: the address and availability status of the top macroblock of the macroblock pair above-left of the
current macroblock pair.

Figure 6-13 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and
mbAddrD relative to the current macroblock with CurrMbAddr.

mbAddrA, mbAddrB, mbAddrC, and mbAddrD have identical values regardless whether the current macroblock is the
top or the bottom macroblock of a macroblock pair.

mbAddrD mbAddrB mbAddrC

CurrMbAddr

Figure 6-13 — Neighbouring macroblocks for a given macroblock in MBAFF frames

Input to the process in subclause 6.4.7 is mbAddrA = 2 * (CurrMbAddr/2 —1) and the output is whether the
macroblock mbAddrA is available. In addition, mbAddrA is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.7 is mbAddrB = 2 * (CurrMbAddr / 2 — PicWidthInMbs) and the output is
whether the macroblock mbAddrB is available.

Input to the process in subclause 6.4.7 is mbAddrC =2 * (CurrMbAddr / 2 — PicWidthInMbs + 1) and the output is
whether the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr / 2 + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.7 is mbAddrD =2 * (CurrMbAddr / 2 — PicWidthInMbs - 1) and the output is
whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to 0.

6.4.10 Derivation processesfor neighbouring macroblocks, blocks, and partitions
Subclause 6.4.10.1 specifies the derivation process for neighbouring macroblocks.
Subclause 6.4.10.2 specifies the derivation process for neighbouring 8x8 luma blocks.

Subclause 6.4.10.3 specifies the derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal
to 3.

Subclause 6.4.10.4 specifies the derivation process for neighbouring 4x4 luma blocks.

ITU-T Rec. H.264 (11/2007) 29

Subclause 6.4.10.5 specifies the derivation process for neighbouring 4x4 chroma blocks.

Subclause 6.4.10.6 specifies the derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal
to 3.

Subclause 6.4.10.7 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartldxN, subMbPartldxN, luma8x8BIkIdxN, cb8x8BIKIdxN, cr8x8BIkIdxN, Iuma4x4BIkIdxN,
cb4x4BlkIdxN, cr4x4BlkIdxN, and chroma4x4BlkIdxN for the output. These input and output assignments are used in
subclauses 6.4.10.1 to 6.4.10.7. The variable predPartWidth is specified when Table 6-2 is referred to.

Table 6-2 — Specification of input and output assignmentsfor subclauses 6.4.10.1 t0 6.4.10.7

N xD yD
A -1 0
B 0 -1
C | predPartWidth -1
D -1 -1

Figure 6-14 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the
current macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.

D B C
A Current
Macroblock
or Partition
or Block

Figure 6-14 — Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.4.10.1 Derivation processfor neighbouring macroblocks

Outputs of this process are

— mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status and

— mbAddrB: the address of the macroblock above the current macroblock and its availability status.
mbAddrN (with N being A or B) is derived as follows:

— The difference of luma location (xD, yD) is set according to Table 6-2.

— The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for luma locations
with (xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

6.4.10.2 Derivation processfor neighbouring 8x8 luma block
Input to this process is an 8x8 luma block index luma8x8BlkIdx.

The luma8x8BIkldx specifies the 8x8 luma blocks of a macroblock in a raster scan.

30 ITU-T Rec. H.264 (03/2005)

Outputs of this process are

— mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and
its availability status,

— luma8x8BIlkIdxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8BIkIdx and its
availability status,

— mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

— luma8x8BIkldxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8Blkldx and its
availability status.

mbAddrN and luma8x8BIlkIdxN (with N being A or B) are derived as follows.
— The difference of luma location (xD, yD) is set according to Table 6-2.
— The luma location (XN, yN) is specified by

xN = (luma8x8BIkIdx % 2) * 8 + xD (6-21)

yN = (luma8x8BIkIdx /2) * 8 + yD (6-22)

— The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for luma locations
with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

— The variable luma8x8BIkIdxN is derived as follows.
— If mbAddrN is not available, luma8x8BlkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the 8x8 luma block in the macroblock mbAddrN covering the luma
location (xW, yW) is assigned to luma8x8BIlkIdxN.

6.4.10.3 Derivation processfor neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 8x8 chroma block is identical to the derivation process for neighbouring 8x8
luma block as specified in subclause 6.4.10.2 when substituting the term “luma” with the term “Cb” or the term “Cr”,
and substituting the term “luma8x8BlkIdx” with the term “cb8x8BlkIdx” or the term “cr8x8BlkIdx” in all places in
subclause 6.4.10.2.

6.4.10.4 Derivation processfor neighbouring 4x4 luma blocks
Input to this process is a 4x4 luma block index luma4x4BIkIdx.

Outputs of this process are

— mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and
its availability status,

— luma4x4BIkIdxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4Blkldx and its
availability status,

— mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

— luma4x4BIkldxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4Blkldx and its
availability status.

mbAddrN and luma4x4BIlkIdxN (with N being A or B) are derived as follows.
— The difference of luma location (xD, yD) is set according to Table 6-2.

— The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with luma4x4BlkIdx as the
input and (X, y) as the output.

— The luma location (xN, yN) is specified by

xN=x+xD (6-23)

yN=y+yD (6-24)

ITU-T Rec. H.264 (11/2007) 31

— The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for luma locations
with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

— The variable luma4x4BlkIdxN is derived as follows:
— If mbAddrN is not available, luma4x4BIkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the 4x4 luma block in the macroblock mbAddrN covering the luma
location (xW, yW) is assigned to luma4x4BIkIdxN.

6.4.10.5 Derivation processfor neighbouring 4x4 chroma blocks
Input to this process is a 4x4 chroma block index chroma4x4BIkIdx.

Outputs of this process are

— mbAddrA (either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock) and
its availability status,

— chroma4x4BIkIdxA (the index of the 4x4 chroma block to the left of the 4x4 chroma block with index
chroma4x4BlkIdx) and its availability status,

— mbAddrB (either equal to CurrMbAddr or the address of the macroblock above the current macroblock) and its
availability status,

— chroma4x4BlklIdxB (the index of the 4x4 chroma block above the 4x4 chroma block with index chroma4x4BlkIdx)
and its availability status.

mbAddrN and chroma4x4BIkIdxN (with N being A or B) are derived as follows:
— The difference of chroma location (XD, yD) is set according to Table 6-2.
— The position (x, y) of the upper-left sample of the 4x4 chroma block with index chroma4x4BlkIdx is derived by

x = InverseRasterScan(chroma4x4BlklIdx, 4, 4, 8,0) (6-25)

y = InverseRasterScan(chroma4x4BIkldx, 4, 4, 8, 1) (6-26)

— The chroma location (XN, yN) is specified by

xN=x+xD (6-27)

yN=y+yD (6-28)

— The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for chroma locations
with (XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

— The variable chroma4x4BIlkIdxN is derived as follows.
— If mbAddrN is not available, chroma4x4BIlkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the 4x4 chroma block in the macroblock mbAddrN covering the chroma
location (xW, yW) is assigned to chroma4x4BIkIdxN.

6.4.10.6 Derivation processfor neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3
This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 4x4 chroma block in 4:4:4 chroma format is identical to the derivation process
for neighbouring 4x4 luma block as specified in subclause 6.4.10.4 when substituting the term “luma” with the term
“Cb” or the term “Cr”, and substituting the term “luma4x4BlkIdx” with the term “cb4x4Blkldx” or the term
“cr4x4BlkIdx” in all places in subclause 6.4.10.4.

6.4.10.7 Derivation processfor neighbouring partitions
Inputs to this process are

— amacroblock partition index mbPartldx

— acurrent sub-macroblock type currSubMbType

— asub-macroblock partition index subMbPartldx

32 ITU-T Rec. H.264 (03/2005)

Outputs of this process are

mbAddrA\mbPartldxA\subMbPartldxA: specifying the macroblock or sub-macroblock partition to the left of the
current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

mbAddrB\mbPartldxB\subMbPartldxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartldx\subMbPartldx and
its availability status,

mbAddrC\mbPartldxC\subMbPartldxC: specifying the macroblock or sub-macroblock partition to the right-above
of the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

mbAddrD\mbPartldxD\subMbPartldxD: specifying the macroblock or sub-macroblock partition to the left-above
of the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status.

mbAddrN, mbPartldxN, and subMbPartldxN (with N being A, B, C, or D) are derived as follows.

The inverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with mbPartldx as
the input and (x, y) as the output.

The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows.

— If mb_type is equal to P_8x8, P_8x8ref0 or B_8x8, the inverse sub-macroblock partition scanning process as
described in subclause 6.4.2.2 is invoked with subMbPartldx as the input and (xS, yS) as the output.

— Otherwise, (xS, yS) are setto (0, 0).

The variable predPartWidth in Table 6-2 is specified as follows.

— Ifmb type is equal to P_Skip, B_Skip, or B_Direct 16x16, predPartWidth = 16.
— Otherwise, if mb_type is equal to B_8x8, the following applies.

— If currSubMbType is equal to B_Direct 8x8, predPartWidth = 16.

NOTE 1 — When currSubMbType is equal to B_Direct 8x8 and direct_spatial mv_pred_flag is equal to 1, the
predicted motion vector is the predicted motion vector for the complete macroblock.

— Otherwise, predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwise, if mb_type is equal to P 8x8 or P_8x8refl,
predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwise, predPartWidth = MbPartWidth(mb_type).
The difference of luma location (xD, yD) is set according to Table 6-2.

The neighbouring luma location (XN, yN) is specified by

xN=x+ xS +xD (6-29)

yN=y+yS+yD (6-30)

The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for luma locations
with (XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

Depending on mbAddrN, the following applies.

— If mbAddrN is not available, the macroblock or sub-macroblock partition —
mbAddrN\mbPartIdxN\subMbPartIdxN is marked as not available.

— Otherwise (mbAddrN is available), the following applies.

— The macroblock partition in the macroblock mbAddrN covering the luma location (xW, yW) is assigned
to mbPartldxN and the sub-macroblock partition inside the macroblock partition mbPartldxN covering the
sample (xW, yW) in the macroblock mbAddrN is assigned to subMbPartIdxN.

— When the partition given by mbPartldxN and subMbPartldxN is not yet decoded, the macroblock partition
mbPartldxN and the sub-macroblock partition subMbPartldxN are marked as not available.

ITU-T Rec. H.264 (11/2007) 33

NOTE 2 — The latter condition is, for example, the case when mbPartldx = 2, subMbPartldx = 3, xD = 4, yD=-1, i.e.,
when neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

6.4.11 Derivation processfor neighbouring locations

Input to this process is a luma or chroma location (XN, yN) expressed relative to the upper left corner of the current
macroblock.

Outputs of this process are

— mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

— (xW, yW): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather
than relative to the upper-left corner of the current macroblock).

Let maxW and maxH be variables specifying maximum values of the location components xN, xW, and yN, yW,
respectively. maxW and maxH are derived as follows:

— If'this process is invoked for neighbouring luma locations,

maxW =maxH =16 (6-31)

— Otherwise (this process is invoked for neighbouring chroma locations),

maxW = MbWidthC (6-32)

maxH = MbHeightC (6-33)

Depending on the variable MbaffFrameFlag, the neighbouring locations are derived as follows:

— If MbaffFrameFlag is equal to 0, the specification for neighbouring locations in fields and non-MBAFF frames as
described in subclause 6.4.11.1 is applied.

— Otherwise (MbaffFrameFlag is equal to 1), the specification for neighbouring locations in MBAFF frames as
described in subclause 6.4.11.2 is applied.

6.4.11.1 Specification for neighbouring locationsin fieldsand non-M BAFF frames
The specifications in this subclause are applied when MbaffFrameFlag is equal to 0.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.8 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-3 specifies mbAddrN depending on (xN, yN).

Table 6-3 — Specification of mbAddrN

34

XN yN mbAddrN

<0 <0 mbAddrD

<0 0. maxH- 1 mbAddrA

0. maxW-1 <0 mbAddrB

0 .. maxW - 1 0. maxH-1 CurrMbAddr

> maxW - 1 <0 mbAddrC

> maxW - 1 0. maxH-1 not available
>maxH - 1 not available

ITU-T Rec. H.264 (03/2005)

The neighbouring location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxW) % maxW (6-34)

yW = (yN + maxH) % maxH (6-35)

6.4.11.2 Specification for neighbouring locationsin MBAFF frames
The specifications in this subclause are applied when MbaffFrameFlag is equal to 1.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.9 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-4 specifies the macroblock addresses mbAddrN and yM in two ordered steps:
1. Specification of a macroblock address mbAddrX depending on (xN, yN) and the following variables:
— The variable currMbFrameFlag is derived as follows.
- If the macroblock with address CurrMbAddr is a frame macroblock, currMbFrameFlag is set equal to 1,

— Otherwise (the macroblock with address CurrMbAddr is a field macroblock), currMbFrameFlag is set
equal to 0.

— The variable mbIsTopMbFlag is derived as follows.

- If the macroblock with address CurrMbAddr is a top macroblock (CurrMbAddr % 2 is equal to 0),
mblIsTopMbFlag is set equal to 1;

- Otherwise (the macroblock with address CurrMbAddr is a bottom macroblock, CurrMbAddr % 2 is
equal to 1), mbIsTopMbFlag is set equal to 0.

2. Depending on the availability of mbAddrX, the following applies:
— If mbAddrX is not available, mbAddrN is marked as not available.

— Otherwise (mbAddrX is available), mbAddrN is marked as available and Table 6-4 specifies mbAddrN and
yM depending on (xN, yN), currMbFrameFlag, mblsTopMbFlag, and the variable mbAddrXFrameFlag,
which is derived as follows.

- If the macroblock mbAddrX is a frame macroblock, mbAddrXFrameFlag is set equal to 1,
- Otherwise (the macroblock mbAddrX is a field macroblock), mbAddrXFrameFlag is set equal to 0.

Unspecified values (na) of the above flags in Table 6-4 indicate that the value of the corresponding flag is not relevant
for the current table rows.

ITU-T Rec. H.264 (11/2007) 35

Table 6-4 — Specification of mbAddrN and yM

o0
— < (5] _a
5| = % =)
gle L 3
217 oz |% E z
2L i s} IS =l
S| &= o k] 2 o
. | o= [EE] § O|E| ¢ : .
> > 5| E = = & = >
1 |mbAddrD mbAddrD+1 |[yN
1 1 mbAddrA yN
0 [mbAddrA 5 MbAddrA + 1 |(yN + maxH) >> 1
<0 <0 1 mbAddrD + 1 [2*yN
bAddrD
A i mbAddD ___ [yN
0 |mbAddrD mbAddrD +1 [yN
1 mbAddrA yN
1 |mbAddrA 0 yN%2== mbAddrA yN>> |
yN %2 !1=0 mbAddrA +1 |yN>>1
1 1 mbAddrA + 1 |[yN
0 |mbAddrA yN %2 == mbAddrA (yN +maxH)>> 1
0 [yN%21=0 mbAddrA + 1 |(yN + maxH) >> 1
<0 0. maxH - 1 | [N <(maxt/2) [mbAddrA yN <<1
1 |mbAddrA yN >= (maxH /2)|mbAddrA +1 |(yN<<1)- maxH
0 mbAddrA yN
0 yN < (maxH /2) |mbAddrA (yN<<1)+1
0 [mbAddrA |! [yN>=(maxH/2)[mbAddrA +1 [(yN<<l)+ 1— maxH
0 mbAddrA+1 |yN
1 |mbAddrB mbAddrB+1 |yN
U o [currMbAddr CurrMbAddr - 1[yN
0 .. maxW — 1l<0 mbAddrB+1 |2 *yN
0 1 jmbAddrB bAddD N
0 |mbAddrB mbAddrB+1 [yN
0..maxW —1]0 .. maxH - 1 CurrMbAddr CurrMbAddr |yN
1 |mbAddrC mbAddrC+1 |yN
I o not available not available |na
>maxW—1 [<0 A mbAddrC+1 (2 *yN
o |1 [roadac mbAddrC yN
0 |mbAddrC mbAddrC+1 |yN
>maxW—1 |0.. maxH-1 not available not available |na
>maxH - 1 not available not available |na

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (XN + maxW) % maxW (6-36)

yW = (yM + maxH) % maxH (6-37)

36 ITU-T Rec. H.264 (03/2005)

7 Syntax and semantics
7.1 Method of specifying syntax in tabular form

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be
specified, either directly or indirectly, in other clauses.
NOTE — An actual decoder should implement means for identifying entry points into the bitstream and means to identify and

handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified
here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it
specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position
beyond the syntax element in the bitstream parsing process.

C | Descriptor

/* A statement can be a syntax element with an associated syntax category and
descriptor or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two examples */

syntax_element 3 | ue(v)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and
is treated functionally as a single statement. */

{

statement

statement

/* A “while” structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */

while(condition)

statement

/* A “do ... while” structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */

do

statement

while(condition)

/* An “if ... else” structure specifies a test of whether a condition is true, and if
the condition is true, specifies evaluation of a primary statement, otherwise,
specifies evaluation of an alternative statement. The “else” part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */

if(condition)

primary statement

else

alternative statement

/* A “for” structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */

for(initial statement; condition; subsequent statement)

primary statement

ITU-T Rec. H.264 (11/2007) 37

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte aligned() is specified as follows:

— If'the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a
byte, the return value of byte aligned() is equal to TRUE.

— Otherwise, the return value of byte aligned() is equal to FALSE.

more_data_in_byte stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is
specified as follows:

— If more data follow in the byte stream, the return value of more data_in_byte stream() is equal to TRUE.
— Otherwise, the return value of more_data in_byte stream() is equal to FALSE.
more_rbsp_data() is specified as follows:

— If there is more data in an RBSP before rbsp_trailing bits(), the return value of more rbsp data() is equal to
TRUE.

— Otherwise, the return value of more rbsp_data() is equal to FALSE.

The method for enabling determination of whether there is more data in the RBSP is specified by the application
(or in Annex B for applications that use the byte stream format).

more_rbsp_trailing_data() is specified as follows:
— If'there is more data in an RBSP, the return value of more rbsp_trailing_data() is equal to TRUE.
— Otherwise, the return value of more rbsp_trailing_data() is equal to FALSE.

next_bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as
specified in Annex B, next_bits(n) returns a value of 0 if fewer than n bits remain within the byte stream.

read bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is
equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

Categories (labelled in the table as C) specify the partitioning of slice data into at most three slice data partitions. Slice
data partition A contains all syntax elements of category 2. Slice data partition B contains all syntax elements of
category 3. Slice data partition C contains all syntax elements of category 4. The meaning of other category values is
not specified. For some syntax elements, two category values, separated by a vertical bar, are used. In these cases, the
category value to be applied is further specified in the text. For syntax structures used within other syntax structures, the
categories of all syntax elements found within the included syntax structure are listed, separated by a vertical bar. A
syntax element or syntax structure with category marked as "All" is present within all syntax structures that include that
syntax element or syntax structure. For syntax structures used within other syntax structures, a numeric category value
provided in a syntax table at the location of the inclusion of a syntax structure containing a syntax element with
category marked as "All" is considered to apply to the syntax elements with category "All".

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two
descriptors, separated by a vertical bar, are used. In these cases, the left descriptors apply when
entropy coding mode flag is equal to 0 and the right descriptor applies when entropy coding mode flag is equal to 1.

— ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in subclause 9.3.

— b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the
return value of the function read bits(8).

— ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in subclause 9.2.

— f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process
for this descriptor is specified by the return value of the function read bits(n).

— i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the

38 ITU-T Rec. H.264 (03/2005)

7.3
731

732

return value of the function read bits(n) interpreted as a two’s complement integer representation with most
significant bit written first.

me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in subclause 9.1.

se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in subclause 9.1.

u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a binary representation of an unsigned integer with
most significant bit written first.

ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

Syntax in tabular form

NAL unit syntax

nal_unit(NumBytesInNALunit) { C | Descriptor
forbidden_zero_bit All | f(1)
nal_ref _idc All | u2)
nal_unit_type All | u(5)

NumBytesInRBSP = 0

nalUnitHeaderBytes = 1

if(nal_unit_type == 14 || nal unit type == 20) {

nal_unit header svc extension() /* specified in Annex G */

nalUnitHeaderBytes += 3

}

for(i = nalUnitHeaderBytes; i < NumBytesInNALunit; i++) {

if(i + 2 < NumBytesInNALunit && next_bits(24) == 0x000003) {

rbsp_byte]l NumBytesInRBSP++] All | b(8)

rbsp_byte]l NumBytesInRBSP++] All | b(8)

1+=2

emulation_prevention_three byte /* equal to 0x03 */ All | f(8)
} else

rbsp_byte]l NumBytesInRBSP++] All | b(8)

Raw byte sequence payloads and RBSP trailing bits syntax

7.3.21 Sequence parameter set RBSP syntax

seq_parameter_set rbsp() { C | Descriptor
seq parameter set data() 0
rbsp_trailing_bits() 0

ITU-T Rec. H.264 (11/2007) 39

7.3.2.1.1 Sequence parameter set data syntax

seq parameter set data() { C | Descriptor
profile idc 0 | u®
constraint_set0 _flag 0 |u)
constraint_setl flag 0 |ul)
constraint_set2 flag 0 |u)
constraint_set3 flag 0 |ul)
reserved_zero_4bits/* equal to 0 */ 0 |u@4
level idc 0 | u®
seq_parameter_set_id 0 | ue(v)
if(profile idc == 100 || profile idc == 110 ||
profile ide == 122 || profile idc == 244 || profile idc == 44 ||
profile ide == 83 || profile idc == 86) {
chroma_format_idc 0 | ue(v)
if(chroma_format idc == 3)
separate_colour_plane flag 0 | u
bit_depth_luma_minus8 0 | ue(v)
bit_depth_chroma_minus8 0 | ue(v)
gpprime_y zero_transform_bypass flag 0 |u)
seg_scaling_matrix_present_flag 0 | u)
if(seq_scaling_matrix_present flag)
for(1=0;1<((chroma format idc != 3)?8:12);i++) {
seq_scaling_list_present flag[i] 0 |u()
if(seq_scaling list present flag[i])
if(i<6)
scaling_list(ScalingList4x4[1], 16, 0
UseDefaultScalingMatrix4x4Flag[i])
else
scaling_list(ScalingList8x8[i—6], 64, 0
UseDefaultScalingMatrix8x8Flag[i— 6])
i
H
log2_max_frame_num_minus4 0 | ue(v)
pic_order_cnt_type 0 | ue(v)
if(pic_order _cnt _type == 0)
log2_max_pic_order_cnt_Isb_minus4 0 | ue(v)
else if(pic_order cnt type == 1) {
delta_pic_order_always zero flag 0 | u(l)
offset_for_non_ref_pic 0 | se(v)
offset_for_top_to bottom_field 0 | se(v)
num_ref_frames in_pic_order_cnt_cycle 0 | ue(v)
for(i=0;1i<num_ref frames in_pic_order cnt cycle; i++)
offset_for_ref frame[i] 0 | se(v)
H
num_ref_frames 0 | ue(v)
gaps in_frame num_value allowed flag 0 | ul)
pic_width_in_mbs _minusl 0 | ue(v)
pic_height_in_map_units minusl 0 | ue(v)
frame_mbs only flag 0 |ul)

40 ITU-T Rec. H.264 (03/2005)

if(frame mbs_only flag)
mb_adaptive frame field flag 0 | u)
direct_8x8 inference flag 0 | ul)
frame_cropping_flag 0 | u)
if(frame_cropping_flag) {
frame crop_left offset 0 | ue(v)
frame_crop_right_offset 0 | ue(v)
frame _crop_top_offset 0 | ue(v)
frame_crop_bottom_offset 0 | ue(v)
}
vui_parameters present_flag 0 | u)
if(vui_parameters_present flag)
vui_parameters() 0
}
732111 Scalinglist syntax
scaling_list(scalingList, sizeOfScalingList, useDefaultScalingMatrixFlag) { C | Descriptor

lastScale = 8

nextScale = 8

for(j = 0; j < sizeOfScalingList; j++) {

if(nextScale 1=0) {

delta_scale 0]1 | se(v)

nextScale = (lastScale + delta_scale + 256) % 256

useDefaultScalingMatrixFlag = (j == 0 && nextScale == 0)

i

scalingList[j] = (nextScale == 0) ? lastScale : nextScale

lastScale = scalingList[j]

7.3.2.1.2 Sequence parameter set extension RBSP syntax

seq_parameter_set extension_rbsp() { C Descriptor
seq_parameter_set_id 10 | ue(v)
aux_format_idc 10 | ue(v)
if(aux_format idc != 0) {
bit_depth_aux_minus8 10 | ue(v)
alpha_incr_flag 10 | u(l)
alpha_opaque value 10 | u(v)
alpha_transparent_value 10 | u(v)
j
additional_extension_flag 10 | u(l)
rbsp_trailing_bits() 10
}

I TU-T Rec. H.264 (11/2007)

7322

42

Picture parameter set RBSP syntax
pic_parameter_set rbsp() { C | Descriptor
pic_parameter set_id 1 | ue(v)
seq_parameter_set_id 1 | ue(v)
entropy_coding_mode flag 1 | u(l)
pic_order_present_flag 1 | u)
num_slice_groups minusl 1 | ue(v)
if(num_slice_groups_minusl >0) {
slice_group_map_type 1 | ue(v)
if(slice_group map _type == 0)
for(iGroup = 0; iGroup <= num_slice_groups_minusl; iGroup++)
run_length_minusl| iGroup] 1 | ue(v)
else if(slice_group map type == 2)
for(iGroup = 0; iGroup < num_slice_groups_minusl1; iGroup++) {
top_left[iGroup] 1 | ue(v)
bottom_right[iGroup] 1 | ue(v)
}
else if(slice_group map type == 3 ||
slice_group map _type == 4 ||
slice_group map type == 5) {
dlice_group_change _direction_flag 1 | u(l)
slice_group_change rate minusl 1 | ue(v)
} else if(slice_group map type == 6) {
pic_size in_map_units minusl 1 | ue(v)
for(1=0;1<=pic_size in _map_units minusl; i++)
slice_group_id[i] 1| uv)
b
}
num_ref_idx_|0_active_minusl 1 | ue(v)
num_ref_idx_|1_active_minusl 1 | ue(v)
weighted_pred_flag 1 | ul)
weighted_bipred_idc 1 | u@)
pic_init_qp_minus26 /* relative to 26 */ 1 | se(v)
pic_init_gqs minus26 /* relative to 26 */ 1 | se(v)
chroma_qgp_index_offset 1 | se(v)
deblocking_filter_control_present_flag 1 | ul)
constrained_intra_pred_flag 1 | ul)
redundant_pic_cnt_present_flag 1 | ul)
if(more_rbsp data()) {
transform_8x8_mode flag 1 | u)
pic_scaling_matrix_present_flag 1 | ul)
if(pic_scaling_matrix_present flag)
for(1i=0;1<6+
((chroma_format idc != 3)?2:6) * transform_8x8 mode flag;
i++) {
pic_scaling_list_present_flag[i] 1| u(l)

if(pic_scaling_list present flag[i])

if(i<6)

ITU-T Rec. H.264 (03/2005)

scaling_list(ScalingList4x4[1], 16, 1
UseDefaultScalingMatrix4x4Flag[i])
else
scaling_list(ScalingList8x8[i—6], 64, 1
UseDefaultScalingMatrix8x8Flag[i—6])
}
second_chroma_qp_index_offset 1 | se(v)
}
rbsp_trailing_bits() 1
}

7.3.2.3 Supplemental enhancement infor mation RBSP syntax

sei_rbsp() { C | Descriptor

do

sei_message() 5

while(more_rbsp data())

rbsp_trailing_bits() 5

7.3.2.3.1 Supplemental enhancement infor mation message syntax

sei_message() { C | Descriptor

payloadType =0

while(next_bits(8) == OXFF) {

ff_byte /* equal to OXFF */ 5 | 1(8)
payloadType += 255

}

last_payload_type byte 5 u(8)

payloadType += last_payload type byte

payloadSize = 0

while(next_bits(8) == OxFF) {

ff_byte /* equal to OXFF */ 5 | f(8)
payloadSize += 255

b

last_payload_size byte 5 | u®)

payloadSize += last_payload_size byte

sei_payload(payloadType, payloadSize) 5

7.3.24 Accessunit ddimiter RBSP syntax

access_unit_delimiter_rbsp() { C | Descriptor

primary_pic_type u(3)

N D

rbsp_trailing_bits()

I TU-T Rec. H.264 (11/2007)

7.3.25 End of sequence RBSP syntax

end of seq rbsp() { C | Descriptor

}

7.3.26 End of stream RBSP syntax

end of stream rbsp() { C | Descriptor

}

7.3.2.7 Filler data RBSP syntax

filler data rbsp() { C | Descriptor
while(next_bits(8) == OxFF)
ff_byte /* equal to OXFF */ 9 | f(8)
rbsp_trailing_bits() 9
}

7.3.28 Slicelayer without partitioning RBSP syntax

slice layer without partitioning_rbsp() { C Descriptor
slice_header() 2
slice_data() /* all categories of slice_data() syntax */ 2134
rbsp_slice_trailing_bits() 2

H

7.3.29 Slicedata partition RBSP syntax
7.3.2.9.1 Slicedata partition A RBSP syntax

slice_data partition a layer rbsp() { C | Descriptor
slice_header() 2
dice id All | ue(v)
slice_data() /* only category 2 parts of slice data() syntax */ 2
rbsp_slice_trailing_bits() 2

}

44 ITU-T Rec. H.264 (03/2005)

7.3.2.9.2 Slice data partition B RBSP syntax

slice_data partition b _layer rbsp() { C | Descriptor
dlice id All | ue(v)
if(separate_colour plane flag == 1)
colour_plane id All | u(2)
if(redundant_pic_cnt present flag)
redundant_pic_cnt All | ue(v)
slice_data() /* only category 3 parts of slice_data() syntax */ 3
rbsp_slice_trailing_bits() 3
}

7.3.2.9.3 Slicedata partition C RBSP syntax

slice_data_partition ¢ layer rbsp() { C | Descriptor
dice id All | ue(v)
if(separate_colour plane flag == 1)
colour_plane id All | u(2)
if(redundant_pic_cnt present flag)
redundant_pic_cnt All | ue(v)
slice_data() /* only category 4 parts of slice_data() syntax */ 4
rbsp_slice_trailing_bits() 4
}

7.3.2.10 RBSP dlicetrailing bits syntax

rbsp_slice trailing bits() { C | Descriptor

rbsp_trailing_bits() All

if(entropy coding mode flag)

while(more rbsp _trailing_data())

cabac zero word /* equal to 0x0000 */ All | f(16)

7.3.2.11 RBSP trailing bits syntax

rbsp_trailing_bits() { C | Descriptor
rbsp_stop_one bit /* equal to 1 */ All | f(1)
while(!byte aligned())
rbsp_alignment_zero_bit /* equal to 0 */ All | (1)
j

I TU-T Rec. H.264 (11/2007)

7.3.3

46

Slice header syntax

slice_header() { C | Descriptor
first_mb_in_dlice 2 | ue(v)
dlice_type 2 | ue(v)
pic_parameter_set_id 2 | ue(v)
if(separate_colour plane flag == 1)
colour_plane id 2 | u®)
frame_num 2 | uv)
if(!frame mbs_only flag) {
field_pic flag 2 | u(l)
if(field pic flag)
bottom_field_flag 2 | ul)
)
if(nal unit type == 5)
idr_pic _id 2 | ue(v)
if(pic_order cnt type == 0) {
pic_order_cnt_Isb 2 | u(v)
if(pic_order present flag && !field pic_flag)
delta_pic_order_cnt_bottom 2 | se(v)
§
if(pic_order_cnt_type == 1 && !delta_pic_order always zero flag) {
delta_pic_order_cnt[0] 2 | se(v)
if(pic_order present flag && !field pic flag)
delta_pic_order_cnt[1] 2 | se(v)
)
if(redundant_pic_cnt present flag)
redundant_pic_cnt 2 | ue(v)
if(slice_type == B)
direct_spatial_mv_pred_flag 2 | ul)
if(slice_ type == P || slice_type == SP || slice type == B) {
num_ref_idx_active override flag 2 | ul)
if(num_ref idx active override flag) {
num_ref_idx_10_active_minusl 2 | ue(v)
if(slice_type == B)
num_ref_idx_11 active_minusl 2 | ue(v)
§
)
ref pic_list reordering() 2
if((weighted pred flag && (slice type == P || slice type == SP)) ||
(weighted bipred idc == 1 && slice type == B))
pred weight table() 2
if(nal _ref idc !=0)
dec ref pic_marking() 2
if(entropy coding mode flag && slice type != I && slice type != SI)
cabac init_idc 2 | ue(v)
dice_gp_ddlta 2 | se(v)

if(slice type == SP || slice type == SI) {

ITU-T Rec. H.264 (03/2005)

if(slice_type == SP)
sp_for_switch_flag 2 u(l)
slice_gs delta 2 | se(v)
}
if(deblocking_filter control present flag) {
disable deblocking filter_idc 2 | ue(v)
if(disable deblocking_filter idc != 1) {
dlice_alpha cO_offset_div2 2 | se(v)
dice beta offset_div2 2 | se(v)
}
H
if(num_slice groups minusl >0 &&
slice group map type >=3 && slice group map type <=15)
dice_group_change cycle 2 | uv)
}

7.3.3.1 Referencepicturelist reordering syntax

ref pic_list reordering() {

C | Descriptor

if(slice type % 5 = 2 && slice _type % 5 = 4) {

ref_pic list_reordering flag [0

2 u(l)

if(ref pic_list reordering flag 10)

do {

reordering_of pic_nums idc

2 | ue(v)

if(reordering of pic nums idc == 0 ||
reordering_of pic nums idc == 1)

abs diff_pic_num_minusl

2 | uev)

else if(reordering_of pic nums idc == 2)

long_term_pic_num

2 | ue(v)

} while(reordering_of pic nums idc != 3)

}

if(slice type% S5 == 1) {

ref_pic list_reordering flag I1

2 u(l)

if(ref pic_list reordering flag 11)

do {

reordering_of pic_nums idc

2 | ue(v)

if(reordering of pic nums idc == 0 ||
reordering of pic nums idc == 1)

abs diff_pic_num_minusl

2 | ugv)

else if(reordering_of pic nums idc == 2)

long_term_pic_num

2 ue(v)

} while(reordering_of pic_nums_idc != 3)

I TU-T Rec. H.264 (11/2007)

47

7.3.3.2 Prediction weight table syntax

pred weight table() { Descriptor
luma_log2 weight_denom ue(v)
if(ChromaArrayType != 0)
chroma_log2_weight_denom ue(v)
for(i=0;1i<=num_ref idx 10 active minusl; i++) {
luma_weight_10 flag u(l)
if(luma_weight 10 flag) {
luma_weight 0] 1] se(v)
luma_offset_10[1] se(v)
H
if (ChromaArrayType !'= 0) {
chroma_weight_I0 flag u(l)
if(chroma_weight 10 flag)
for(j=0;j<2;j++) {
chroma_weight_10[][] se(v)
chroma_offset_10[i][]] se(v)
H
H
H
if(slice type %5 == 1)
for(1=0;1<=num_ref idx 11 _active minusl;i++) {
luma_weight_11 flag u(l)
if(luma_weight 11 flag) {
luma_weight_[1] 1] se(v)
luma_offset_11[1] se(v)
H
if(ChromaArrayType != 0) {
chroma_weight_I1 flag u(l)
if(chroma_weight 11 _flag)
for(j=0;j<2;j++) {
chroma_weight_11[i][] se(v)
chroma_offset 11[i][]] se(v)
H
}
H

48 ITU-T Rec. H.264 (03/2005)

7333

Decoded reference picture marking syntax

dec ref pic_marking() { C | Descriptor
if(IdrPicFlag) {
no_output_of prior_pics flag 215 | u(l)
long term_reference flag 215 | u(l)
} else {
adaptive ref_pic_ marking_mode flag 215 | u(l)
if(adaptive _ref pic_marking mode flag)
do {
memory_management_control_operation 2|5 | ue(v)
if(memory_management_control_operation == 1 ||
memory management control operation == 3)
difference_of _pic_nums minusl 215 | ue(v)
if(memory _management control operation == 2)
long _term_pic_num 215 | ue(v)
if(memory management control operation == 3 ||
memory management control operation == 6)
long_term_frame_idx 2|5 | ue(v)
if(memory management control operation == 4)
max_long_term_frame idx_plusl 2|5 | ue(v)
}+ while(memory management control operation != 0)
}
}

I TU-T Rec. H.264 (11/2007)

49

734

50

Slice data syntax

slice_data() { C Descriptor
if(entropy coding_mode flag)
while(!byte aligned())
cabac_alignment_one_bit 2 f(1)
CurrMbAddr = first mb_in_slice * (1 + MbaffFrameFlag)
moreDataFlag = 1
prevMbSkipped = 0
do {
if(slice type != I && slice type != SI)
if(lentropy_coding_mode flag) {
mb_skip_run 2 ue(v)
prevMbSkipped = (mb_skip run>0)
for(1i=0; i<mb_skip run; i++)
CurrMbAddr = NextMbAddress(CurrMbAddr)
moreDataFlag = more rbsp data()
} else {
mb_skip_flag 2 ae(v)
moreDataFlag = !Imb_skip flag
H
if(moreDataFlag) {
if(MbaffFrameFlag && (CurrMbAddr % 2 == 0 ||
(CurrMbAddr % 2 == 1 && prevMbSkipped)))
mb_field_decoding_flag 2 u(l) | ae(v)
macroblock layer() 21314
H
if(!entropy_coding mode flag)
moreDataFlag = more rbsp data()
else {
if(slice type != I && slice type != SI)
prevMbSkipped = mb_skip flag
if(MbaffFrameFlag && CurrMbAddr %2 == 0)
moreDataFlag = 1
else {
end_of dlice flag 2 ae(v)

moreDataFlag = lend of slice flag

}

CurrMbAddr = NextMbAddress(CurrMbAddr)

} while(moreDataFlag)

ITU-T Rec. H.264 (03/2005)

735

M acroblock layer syntax

macroblock layer() { C | Descriptor
mb_type 2 ue(v) | ae(v)
if(mb_type == 1 PCM) {
while(!byte aligned())
pcm_alignment_zero_bit 3 f(1)
for(1=0;1<256;it++)
pcm_sample luma[i] 3 u(v)
for(i=0;1i<2* MbWidthC * MbHeightC; i++)
pcm_sample chroma[i] 3 u(v)
} else {
noSubMbPartSizeLessThan8x8Flag = 1
if(mb_type != I NxN &&
MbPartPredMode(mb _type, 0) != Intra 16x16 &&
NumMbPart(mb_type) == 4) {
sub_ mb pred(mb_type) 2
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if(sub_mb_type[mbPartldx] != B_Direct 8x8) {
if NumSubMbPart(sub_mb_type[mbPartldx]) > 1)
noSubMbPartSizeLessThan8x8Flag = 0
} else if(!direct 8x8 inference flag)
noSubMbPartSizeLessThan8x8Flag = 0
} else {
if(transform 8x8 mode flag && mb type == 1 NxN)
transform_size 8x8 flag 2 u(l) | ae(v)
mb_pred(mb_type) 2
b
if(MbPartPredMode(mb_type, 0) != Intra 16x16) {
coded_block_pattern 2 | me(v)|ae(v)
if(CodedBlockPatternLuma > 0 &&
transform_8x8 mode flag && mb type != I NxN &&
noSubMbPartSizeLessThan8x8Flag &&
(mb type != B Direct 16x16 || direct 8x8 inference flag))
transform_size 8x8 flag 2 u(l) | ae(v)
}
if(CodedBlockPatternLuma >0 || CodedBlockPatternChroma >0 | |
MbPartPredMode(mb type, 0) == Intra 16x16) {
mb_gp_delta 2 se(v) | ae(v)
residual(0, 0, 15) 3|4
b
}
b

I TU-T Rec. H.264 (11/2007)

51

7351

Macroblock prediction syntax

Descriptor

mb_pred(mb_type) {

if(MbPartPredMode(mb_type, 0) == Intra 4x4 ||
MbPartPredMode(mb_type, 0) == Intra 8x8 ||
MbPartPredMode(mb type, 0) == Intra 16x16) {

if(MbPartPredMode(mb_type, 0) == Intra 4x4)

u(l) | ae(v)

for(luma4x4BIlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++) {
2

prev_intradx4 pred_mode flag[luma4x4BlkIdx]

if(!prev_intradx4 pred mode flag[luma4x4Blkldx])
2

u(3) | ae(v)

rem_intradx4 pred_mode] luma4x4BIkIdx]

}
if(MbPartPredMode(mb_type, 0) == Intra_8x8)

u(l) | ae(v)

for(luma8x8Blkldx=0; luma8x8BlkIdx<4; luma8x8BIlkldx++) {
2

prev_intra8x8 pred_mode flag[luma8x8BlkIdx]

if(!prev_intra8x8 pred mode flag[luma8x8BIkldx])

2 [u@) | ae(v)

rem_intra8x8 pred_mode] luma8x8BIkIdx]

}
if(ChromaArrayType == 1 ||
ChromaArrayType == 2)

2 | ue(v) | ae(v)

intra_chroma_pred_mode

} else if(MbPartPredMode(mb_type, 0) != Direct) {

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx_10_active minusl >0 | |
mb_field decoding flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred L1)

2 | te(v) | ae(v)

ref idx 0] mbPartldx]

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx 11 _active minusl > 0 ||
mb_field decoding flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred LO)

2 | te(v) | ae(v)

ref_idx_|1[mbPartldx]

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode (mb_type, mbPartldx) != Pred L1)

2 | se(v)|ae(v)

for(compldx = 0; compldx < 2; compldx++)

mvd_[O[mbPartldx][0][compldx]

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode(mb_type, mbPartldx) != Pred LO)

2 | se(v)|ae(v)

for(compldx = 0; compldx < 2; compldx++)

mvd_|1[mbPartldx][0][compldx]

52 ITU-T Rec. H.264 (03/2005)

7.35.2 Sub-macroblock prediction syntax

sub_ mb pred(mb_type) { C | Descriptor
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
sub_mb_type] mbPartldx] 2 | ue(v)|ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if((num_ref idx_10_active minusl > 0 || mb_field decoding flag) &&
mb_type != P_8x8ref0 &&
sub_mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L1)
ref_idx |0 mbPartldx] 2 | te(v) | ae(v)
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if((num_ref idx 11 _active minusl > 0 || mb_field decoding flag) &&
sub_mb_type[mbPartldx] != B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred LO)
ref_idx_|1] mbPartldx] 2 | te(v) | ae(v)
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if(sub_mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L1)
for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub mb_type[mbPartldx]);
subMbPartldx++)
for(compldx = 0; compldx < 2; compldx++)
mvd_10[mbPartldx][subMbPartldx][compldx] 2 | se(v)|ae(v)
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if(sub_mb_type[mbPartldx] != B _Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred LO)
for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub mb_type[mbPartldx]);
subMbPartldx++)
for(compldx = 0; compldx < 2; compldx++)

mvd_11[mbPartldx][subMbPartldx][compldx] 2 | se(v)|ae(v)

ITU-T Rec. H.264 (11/2007) 53

7353

54

Residual data syntax

residual(bmFlag, startldx, endldx) {

Descriptor

if(lentropy coding mode flag)

residual block = residual_block cavlc

else

residual block = residual_block cabac

residual luma(i16x16DClevel, i16x16AClevel, level, level8x8,
bmFlag, startldx, endldx)

Intral6x16DCLevel = i16x16DClevel

Intral6x16ACLevel = 116x16AClevel

LumaLevel = level

LumaLevel8x8 = level8x8

if(ChromaArrayType == 1 || ChromaArrayType == 2) {

NumC8x8 =4/ (SubWidthC * SubHeightC)

for(iCbCr = 0; iCbCr < 2; iCbCr++)

if((CodedBlockPatternChroma & 3) && startldx == 0)
/* chroma DC residual present */

residual_block(ChromaDCLevel[iCbCr], 0, 4 * NumC8x8 - 1,
4 * NumC8x8)

314

else

for(1=0;1<4 * NumC8x8; i++)

ChromaDCLevel[iCbCr]J[i]=0

for(iCbCr = 0; iCbCr < 2; iCbCr++)

for(18x8 = 0; 18x8 < NumC8x8; i8x8++)

for(14x4 = 0; 14x4 < 4; i4x4++)

if((CodedBlockPatternChroma & 2) && endldx >0)
/* chroma AC residual present */

residual_block(ChromaACLevel[iCbCr][i8x8*4+i4x4],
max(0, startldx — 1), endldx — 1, 15)

314

else

for(i=0;1<15;i++)

ChromaACLevel[iCbCr][i8x8*4+i4x4][1]=0

} else if(ChromaArrayType == 3) {

residual luma(i16x16DClevel, i16x16AClevel, level, level8x8,
bmFlag, startldx, endldx)

CbIntral6x16DCLevel =116x16DClevel

CbIntral6x16ACLevel =116x16AClevel

CbLevel = level

CbLevel8x8 = level8x8

residual luma(i16x16DClevel, i16x16AClevel, level, level8x8,
bmFlag, startldx, endldx)

CrIntral6x16DCLevel = 116x16DClevel

CrIntral6x16ACLevel = 116x16AClevel

CrLevel = level

CrLevel8x8 = level8x8

ITU-T Rec. H.264 (03/2005)

7.3.5.3.1 Residual luma syntax

residual luma(i16x16DClevel, i16x16AClevel, level, level8x8,
bmFlag, startldx, endldx) {

Descriptor

if(lentropy coding_mode flag)

residual_block = residual_block cavlc

else

residual_block = residual block cabac

if('bmFlag && startldx == 0 &&
MbPartPredMode(mb_type, 0) == Intra 16x16)

residual block(i16x16DClevel, 0, 15, 16)

for(18x8 = 0; 18x8 < 4; 18x8++)

if(Itransform_size 8x8 flag || !entropy coding mode flag)

for(i4x4 = 0; i4x4 < 4; 14x4++) {

if(CodedBlockPatternLuma & (1 <<i8x8))

if('bmFlag && endldx >0 &&

MbPartPredMode(mb_type, 0) == Intra 16x16)

residual_block(i16x16AClevel[i8x8*4+ i4x4],

max(0, startldx — 1), endIldx — 1, 15)

else

residual_block(level[i8x8 * 4 + i4x4], startldx, endldx, 16) 3|4

else if('bmFlag &&

MbPartPredMode(mb_type, 0) == Intra 16x16)

for(i=0;1<15;1i++)

i16x16AClevel[i8x8 * 4 + i4x4 J[i]=0

else

for(1=0;1<16; it++)

level[i8x8 * 4 + idx4 J[1]=0

if(!entropy_coding mode flag && transform_size 8x8 flag)

for(i=0;1<16;1i++)

level8x8[i8x8][4 * i + idx4] = level[i8x8 * 4 + i4x4][1]

}

else if(CodedBlockPatternL.uma & (1 <<i8x8))

residual block(level8x8[i8x8], 4 * startldx, 4 * endldx + 3, 64) 3|14

else

for(i=0;1<64;it++)

level8x8[i8x8 J[1]=0

I TU-T Rec. H.264 (11/2007)

55

7.3.5.3.2 Residual block CAVL C syntax

56

residual_block cavlc(coeftfLevel, startldx, endIdx, maxNumCoeff) {

Descriptor

for(1= 0; i < maxNumCoeff; i++)

coeffLevel[1]=0

coeff _token

314

ce(v)

if(TotalCoeff(coeff token)>0) {

if(TotalCoeff(coeff token)> 10 && TrailingOnes(coeff token)<3)

suffixLength = 1

else

suffixLength = 0

for(i=0; i< TotalCoeff(coeff token); i++)

if(1 < TrailingOnes(coeff token)) {

trailing_ones sign_flag

314

u(l)

level[i]=1—-2 * trailing_ones _sign flag

}else {

level prefix

3|4

ce(v)

levelCode = (Min(15, level prefix) << suffixLength)

if(suffixLength >0 || level prefix >=14) {

level suffix

314

u(v)

levelCode += level suffix

}

if(level prefix >= 15 && suffixLength == 0)

levelCode += 15

if(level prefix >= 16)

levelCode += (1 << (level prefix —3))—4096

if(1 == TrailingOnes(coeff token) &&
TrailingOnes(coeff token)<3)

levelCode +=2

if(levelCode % 2 == 0)

level[i]=(levelCode +2)>>1

else

level[i]=(-levelCode —1)>>1

if(suffixLength == 0)

suffixLength = 1

if(Abs(level[i]) > (3 <<(suffixLength—1)) &&
suffixLength < 6)

suffixLength++

}

if(TotalCoeff(coeff token) < endldx — startldx + 1) {

total_zeros

314

ce(v)

zerosLeft = total _zeros

} else

zerosLeft =0

for(i=0; i< TotalCoeff(coeff token)—1;i++) {

if(zerosLeft>0) {

run_before

314

ce(v)

run[i] = run_before

} else

run[i]=0

ITU-T Rec. H.264 (03/2005)

zerosLeft = zerosLeft — run[i |
}
run[TotalCoeff(coeff token)— 1] = zerosLeft
coeffNum = -1
for(1= TotalCoeff(coeff token)—1;1>=0;1i--) {
coeffNum+=run[i]+1
coeffLevel[startldx + coeffNum] =level[i]

7.3.5.3.3 Residual block CABAC syntax

residual_block cabac(coeffLevel, startldx, endldx, maxNumCoeff') { C | Descriptor
if(maxNumCoeff == 64 || (ChromaArrayType == 3)))
coded_block_flag 314 | ae(v)

for(i=0; i < maxNumCoeff; i++)
coeffLevel[1]=0

if(coded_block flag) {
numCoeff = endldx + 1

i = startldx
do {
significant_coeff_flag[i] 314 | ae(v)
if(significant coeff flag[i]) {
last_significant_coeff flag[i] 314 | ae(v)

if(last_significant_coeff flag[i])
numCoeff=1+ 1

H

i+t
} while(1 < numCoeff—1)
coeff_abs level_minusl] numCoeff—1] 314 | ae(v)
coeff_sign_flag[numCoeff— 1] 314 | ae(v)

coeffLevel[numCoeff—1] =
(coeff abs level minusl[numCoeff—1]+1)*
(1 =2 * coeff sign flag] numCoeff—11])
for(i =numCoeff—2;1>=0;i--)
if(significant coeff flag[i]) {
coeff_abs level minusl[i] 314 | ae(v)
coeff_sign_flag[i] 314 | ae(v)
coeffLevel[i] = (coeff abs level minusl[i]+1)*
(1 -2 * coeff sign flag[i])

ITU-T Rec. H.264 (11/2007) 57

7.4 Semantics

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this
subclause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not
specified in the table(s) shall not be present in the bitstream unless otherwise specified in this Recommendation |
International Standard.

7.4.1 NAL unit semantics

NOTE 1 — The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data
and provide header information in a manner appropriate for conveyance on a variety of communication channels or storage
media. All data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic
format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and
byte stream is identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte
stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be
specified outside of this Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

nal_ref_idc not equal to 0 specifies that the content of the NAL unit contains a sequence parameter set, a sequence
parameter set extension, a subset sequence parameter set, a picture parameter set, a slice of a reference picture, a slice
data partition of a reference picture, or a prefix NAL unit preceding a slice of a reference picture.

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2-9, nal ref idc equal to 0 for a NAL unit containing a slice or slice data partition
indicates that the slice or slice data partition is part of a non-reference picture.

nal_ref idc shall not be equal to 0 for sequence parameter set or sequence parameter set extension or subset sequence
parameter set or picture parameter set NAL units. When nal ref idc is equal to 0 for one NAL unit with nal unit_type
in the range of 1 to 4, inclusive, of a particular picture, it shall be equal to O for all NAL units with nal unit type in the
range of 1 to 4, inclusive, of the picture.

nal_ref idc shall not be equal to 0 for NAL units with nal_unit type equal to 5.
nal_ref idc shall be equal to 0 for all NAL units having nal unit type equal to 6, 9, 10, 11, or 12.
nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1.

The column marked "C" in Table 7-1 lists the categories of the syntax elements that may be present in the NAL unit. In
addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the
RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from
the syntax and semantics of the associated RBSP data structure. nal unit_type shall not be equal to 3 or 4 unless at least
one syntax element is present in the RBSP data structure having a syntax element category value equal to the value of
nal unit type and not categorized as "All".

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2-9, VCL and non-VCL NAL units are specified in Table 7-1 in the column
labelled "Annex A NAL unit type class". For coded video sequences conforming to one or more of the profiles specified
in Annex G that are decoded using the decoding process specified in Annex G, VCL and non-VCL NAL units are
specified in Table 7-1 in the column labelled "Annex G NAL unit type class". The entry "suffix dependent" for
nal_unit_type equal to 14, specifies the following.

— If the NAL unit directly following in decoding order a NAL unit with nal unit type equal to 14 is a NAL unit with
nal_unit_type equal to 1 or 5, the NAL unit with nal_unit _type equal to 14 is a VCL NAL unit.

— Otherwise, if the NAL unit directly following in decoding order a NAL unit with nal unit_type equal to 14 is a
NAL unit with nal_unit_type equal to 12, the NAL unit with nal_unit_type equal to 14 is a non-VCL NAL unit.

— Otherwise (the NAL unit directly following in decoding order a NAL unit with nal unit type equal to 14 is a NAL
unit with nal unit type not equal to 1, 5, or 12), the NAL unit with nal unit type equal to 14 is a non-VCL NAL
unit and decoders shall ignore (remove from the bitstream and discard) the NAL unit with nal unit type equal to
14 and the NAL unit directly following in decoding order the NAL unit with nal unit type equal to 14.

58 ITU-T Rec. H.264 (03/2005)

Table 7-1 —NAL unit type codes, syntax element categories, and NAL unit type classes

nal_unit_type Content of NAL unit and RBSP syntax structure C Annex A | Annex G
NAL unit | NAL unit
typeclass | typeclass

0 Unspecified non-VCL | non-VCL
1 Coded slice of a non-IDR picture 2,3,4 VCL VCL
slice_layer without partitioning_rbsp()
2 Coded slice data partition A 2 VCL not
slice_data_partition_a layer rbsp() applicable
3 Coded slice data partition B 3 VCL not
slice_data partition b _layer rbsp() applicable
4 Coded slice data partition C 4 VCL not
slice_data_partition_c_layer rbsp() applicable
5 Coded slice of an IDR picture 2,3 VCL VCL
slice_layer without_partitioning_rbsp()
6 Supplemental enhancement information (SEI) 5 non-VCL | non-VCL
sei_rbsp()
7 Sequence parameter set 0 non-VCL | non-VCL
seq_parameter_set rbsp()
8 Picture parameter set 1 non-VCL | non-VCL
pic_parameter set_rbsp()
9 Access unit delimiter 6 non-VCL | non-VCL
access_unit_delimiter rbsp()
10 End of sequence 7 non-VCL | non-VCL
end of seq rbsp()
11 End of stream 8 non-VCL | non-VCL
end of stream rbsp()
12 Filler data 9 non-VCL | non-VCL
filler_data rbsp()
13 Sequence parameter set extension 10 non-VCL | non-VCL
seq parameter set extension rbsp()
14 Prefix NAL unit in scalable extension 2 non-VCL suffix
prefix_nal unit rbsp() /* specified in Annex G */ dependent
15 Subset sequence parameter set 0 non-VCL | non-VCL
subset _seq parameter_set rbsp() /* specified in Annex G */
16..18 Reserved non-VCL | non-VCL
19 Coded slice of an auxiliary coded picture without partitioning | 2,3,4 | non-VCL | non-VCL
slice_layer without_partitioning_rbsp()
20 Coded slice in scalable extension 2,3,4 | non-VCL VCL
slice_layer in_scalable extension_rbsp()
/* specified in Annex G */
21..23 Reserved non-VCL | non-VCL
24.31 Unspecified non-VCL | non-VCL

NAL units having nal_unit_type equal to 13 or 19 may be discarded by decoders without affecting the decoding process
for NAL units having nal unit type not equal to 13 or 19 and without affecting conformance to this
Recommendation | International Standard.

ITU-T Rec. H.264 (11/2007) 59

NAL units having nal unit type equal to 14, 15, or 20 may be discarded by decoders without affecting the decoding
process for NAL units having nal unit type not equal to 14, 15, or 20 and without affecting conformance to profiles
specified in Annex A.

NAL units that use nal unit type equal to 0 or in the range of 24..31, inclusive, shall not affect the decoding process
specified in this Recommendation | International Standard.

NOTE 2 — NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of
nal_unit_type is specified in this Recommendation | International Standard.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of
nal unit type.
NOTE 3 — This requirement allows future definition of compatible extensions to this Recommendation | International Standard.

In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice
of an IDR picture NAL unit. The following flag is specified:

IdrPicFlag = (nal unit type == 5?1 : 0) (7-1)

When the value of nal unit_type is equal to 5 for a NAL unit containing a slice of a particular picture, the picture shall
not contain NAL units with nal unit_type in the range of 1 to 4, inclusive. For coded video sequences conforming to
one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9,
such a picture is referred to as an IDR picture.

NOTE 4 — Slice data partitioning cannot be used for IDR pictures.
rbsp_bytel i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows.
— Ifthe SODB is empty (i.e., zero bits in length), the RBSP is also empty.
— Otherwise, the RBSP contains the SODB as follows.

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of
the RBSP shall contain the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) rbsp trailing bits() are present after the SODB as follows:

i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the
SODB, (if any)

ii) The next bit consists of a single rbsp_stop_one bit equal to 1, and

iii) When the rbsp stop one bit is not the last bit of a byte-aligned byte, one or more
rbsp _alignment zero_bit is present to result in byte alignment.

3) One or more cabac _zero word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after
the rbsp_trailing_bits() at the end of the RBSP.

n

Syntax structures having these RBSP properties are denoted in the syntax tables using an " rbsp" suffix. These
structures shall be carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP
syntax structures to the NAL units shall be as specified in Table 7-1.

NOTE 5 — When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the
bits of the bytes of the RBSP and discarding the rbsp_stop_one bit, which is the last (least significant, right-most) bit equal to 1,
and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for
the decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three byteis a byte equal to 0x03. When an emulation_prevention_three byte is present in the
NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
- 0x000000
- 0x000001
- 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not
occur at any byte-aligned position:

— 0x00000300
- 0x00000301

60 ITU-T Rec. H.264 (03/2005)

- 0x00000302
— 0x00000303

NOTE 6 — When nal_unit_type is equal to 0, particular care must be exercised in the design of encoders to avoid the presence of
the above-listed three-byte and four-byte patterns at the beginning of the NAL unit syntax structure, as the syntax element
emulation_prevention three byte cannot be the third byte of a NAL unit.

7.4.11 Encapsulation of an SODB within an RBSP (infor mative)
This subclause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation_prevention_three byte for
encapsulation of an RBSP within a NAL unit is specified for the following purposes:

— to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented
within a NAL unit,

— to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the
rbsp_stop_one_bit starting at the end of the RBSP, and

— to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more
cabac_zero word).

The encoder can produce a NAL unit from an RBSP by the following procedure:
The RBSP data is searched for byte-aligned bits of the following binary patterns:

‘00000000 00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10, or 11),
and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns.

‘00000000 00000000 00000011 000000xx",

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in a
cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data.

The resulting sequence of bytes is then prefixed with the first byte of the NAL unit containing the indication of the type
of RBSP data structure it contains. This results in the construction of the entire NAL unit.

This process can allow any SODB to be represented in a NAL unit while ensuring that
— no byte-aligned start code prefix is emulated within the NAL unit, and

— no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within
the NAL unit.

74.1.2 Order of NAL unitsand association to coded pictures, access units, and video sequences
This subclause specifies constraints on the order of NAL units in the bitstream.

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of
NAL units. Within a NAL unit, the syntax in subclauses 7.3, D.1, and E.1 specifies the decoding order of syntax
elements. Decoders conforming to this Recommendation | International Standard shall be capable of receiving NAL
units and their syntax elements in decoding order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPsand their activation

This subclause specifies the activation process of picture and sequence parameter sets for coded video sequences that
conform to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in
clauses 2-9.

NOTE 1 — The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information

from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units or coded slice
data partition A NAL units of one or more coded pictures. Each picture parameter set RBSP is initially considered not
active at the start of the operation of the decoding process. At most one picture parameter set RBSP is considered active
at any given moment during the operation of the decoding process, and the activation of any particular picture
parameter set RBSP results in the deactivation of the previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular value of pic_parameter_set id) is not active and it is referred to
by a coded slice NAL unit or coded slice data partition A NAL unit (using that value of pic_parameter set id), it is
activated. This picture parameter set RBSP is called the active picture parameter set RBSP until it is deactivated by the

ITU-T Rec. H.264 (11/2007) 61

activation of another picture parameter set RBSP. A picture parameter set RBSP, with that particular value of
pic_parameter set id, shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set id for the active picture parameter set
RBSP shall have the same content as that of the active picture parameter set RBSP unless it follows the last VCL NAL
unit of a coded picture and precedes the first VCL NAL unit of another coded picture.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set
RBSPs or one or more SEI NAL units containing a buffering period SEI message. Each sequence parameter set RBSP
is initially considered not active at the start of the operation of the decoding process. At most one sequence parameter
set RBSP is considered active at any given moment during the operation of the decoding process, and the activation of
any particular sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set
RBSP (if any).

When a sequence parameter set RBSP (with a particular value of seq_parameter set id) is not already active and it is
referred to by activation of a picture parameter set RBSP (using that value of seq_parameter_set _id) or is referred to by
an SEI NAL unit containing a buffering period SEI message (using that value of seq parameter set id), it is activated.
This sequence parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the
activation of another sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of
seq parameter set id, shall be available to the decoding process prior to its activation. An activated sequence parameter
set RBSP shall remain active for the entire coded video sequence.

NOTE 2 — Because an IDR access unit begins a new coded video sequence and an activated sequence parameter set RBSP must

remain active for the entire coded video sequence, a sequence parameter set RBSP can only be activated by a buffering period
SEI message when the buffering period SEI message is part of an IDR access unit.

Any sequence parameter set NAL unit containing the value of seq parameter set id for the active sequence parameter
set RBSP shall have the same content as that of the active sequence parameter set RBSP unless it follows the last access
unit of a coded video sequence and precedes the first VCL NAL unit and the first SEI NAL unit containing a buffering
period SEI message (when present) of another coded video sequence.
NOTE 3 — If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints
impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP,
respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified
in this Recommendation | International Standard), they must be available to the decoding process in a timely fashion such that
these constraints are obeyed.

When present, a sequence parameter set extension RBSP includes parameters having a similar function to those of a
sequence parameter set RBSP. For purposes of establishing constraints on the syntax elements of the sequence
parameter set extension RBSP and for purposes of determining activation of a sequence parameter set extension RBSP,
the sequence parameter set extension RBSP shall be considered part of the preceding sequence parameter set RBSP
with the same value of seq_parameter set id. When a sequence parameter set RBSP is present that is not followed by a
sequence parameter set extension RBSP with the same value of seq parameter set id prior to the activation of the
sequence parameter set RBSP, the sequence parameter set extension RBSP and its syntax elements shall be considered
not present for the active sequence parameter set RBSP.

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of
variables derived from those syntax elements) in sequence parameter sets and picture parameter sets and other syntax
elements are expressions of constraints that apply only to the active sequence parameter set and the active picture
parameter set. If any sequence parameter set RBSP is present that is not activated in the bitstream, its syntax elements
shall have values that would conform to the specified constraints if it were activated by reference in an
otherwise-conforming bitstream. If any picture parameter set RBSP is present that is not ever activated in the bitstream,
its syntax elements shall have values that would conform to the specified constraints if it were activated by reference in
an otherwise-conforming bitstream.

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and
the active sequence parameter set shall be considered in effect. For interpretation of SEI messages, the values of the
parameters of the picture parameter set and sequence parameter set that are active for the operation of the decoding
process for the VCL NAL units of the primary coded picture in the same access unit shall be considered in effect unless
otherwise specified in the SEI message semantics.

7.4.1.2.2 Order of access unitsand association to coded video sequences

A bitstream conforming to this Recommendation | International Standard consists of one or more coded video
sequences.

A coded video sequence consists of one or more access units. For coded video sequences that conform to one or more
of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9, the order of
NAL units and coded pictures and their association to access units is described in subclause 7.4.1.2.3.

62 ITU-T Rec. H.264 (03/2005)

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video
sequence are non-IDR access units.

The values of picture order count for the coded pictures in consecutive access units in decoding order containing
non-reference pictures shall be non-decreasing.

When present, an access unit following an access unit that contains an end of sequence NAL unit shall be an IDR access
unit.

When an SEI NAL unit contains data that pertain to more than one access unit (for example, when the SEI NAL unit
has a coded video sequence as its scope), it shall be contained in the first access unit to which it applies.

When an end of stream NAL unit is present in an access unit, this access unit shall be the last access unit in the
bitstream and the end of stream NAL unit shall be the last NAL unit in that access unit.

7.4.1.2.3 Order of NAL unitsand coded picturesand association to access units

This subclause specifies the order of NAL units and coded pictures and association to access unit for coded video
sequences that conform to one or more of the profiles specified in Annex A that are decoded using the decoding process
specified in clauses 2-9.

An access unit consists of one primary coded picture, zero or more corresponding redundant coded pictures, and zero or
more non-VCL NAL units. The association of VCL NAL units to primary or redundant coded pictures is described in
subclause 7.4.1.2.5.

The first access unit in the bitstream starts with the first NAL unit of the bitstream.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of
a new access unit.

— access unit delimiter NAL unit (when present)

— sequence parameter set NAL unit (when present)

— picture parameter set NAL unit (when present)

— SEINAL unit (when present)

— NAL units with nal _unit _type in the range of 14 to 18, inclusive
— first VCL NAL unit of a primary coded picture (always present)

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in subclause
7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access
unit.

— When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access
unit delimiter NAL unit in any access unit.

— When any SEI NAL units are present, they shall precede the primary coded picture.

— When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message
shall be the first SEI message payload of the first SEI NAL unit in the access unit.

— The primary coded picture shall precede the corresponding redundant coded pictures.

— When redundant coded pictures are present, they shall be ordered in ascending order of the value of
redundant pic_cnt.

— When a sequence parameter set extension NAL unit is present, it shall be the next NAL unit after a sequence
parameter set NAL unit having the same value of seq_parameter_set_id as in the sequence parameter set extension
NAL unit.

— When one or more coded slice of an auxiliary coded picture without partitioning NAL units is present, they shall
follow the primary coded picture and all redundant coded pictures (if any).

— When an end of sequence NAL unit is present, it shall follow the primary coded picture and all redundant coded
pictures (if any) and all coded slice of an auxiliary coded picture without partitioning NAL units (if any).

— When an end of stream NAL unit is present, it shall be the last NAL unit.

ITU-T Rec. H.264 (11/2007) 63

NAL units having nal unit_type equal to 0, 12, or in the range of 20 to 31, inclusive, shall not precede the first
VCL NAL unit of the primary coded picture.

NOTE 1 — Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot
follow the last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a
new access unit.

NOTE 2 — When a NAL unit having nal unit_type equal to 7 or 8 is present in an access unit, it may or may not be referred to in
the coded pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal unit type equal to 0, 7, 8, or in the range of 12
to 18, inclusive, or in the range of 20 to 31, inclusive, is shown in Figure 7-1.

start

/

access unit delimiter

<Y

primary coded picture

ki

redundant coded picture

-
-

/

auxiliary coded picture

-l

/

end of sequence

-l

h J

end of stream

'

end

Figure 7-1 — Structur e of an access unit not containing any NAL unitswith nal_unit_typeequal to 0, 7, 8, or in

64

therange of 12t0 18, inclusive, or in therange of 20to 31, inclusive

ITU-T Rec. H.264 (03/2005)

7.4.1.2.4 Detection of thefirst VCL NAL unit of a primary coded picture

This subclause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL
NAL unit of each primary coded picture for coded video sequences that conform to one or more of the profiles specified
in Annex A that are decoded using the decoding process specified in clauses 2-9.

Any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of the current access
unit shall be different from any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded
picture of the previous access unit in one or more of the following ways.

— frame_num differs in value. The value of frame num used to test this condition is the value of frame num that
appears in the syntax of the slice header, regardless of whether that value is inferred to have been equal to 0 for
subsequent use in the decoding process due to the presence of memory management_control operation equal to 5.

NOTE 1 — A consequence of the above statement is that a primary coded picture having frame num equal to 1 cannot
contain a memory_management_control_operation equal to 5 unless some other condition listed below is fulfilled for
the next primary coded picture that follows after it (if any).

— pic_parameter set id differs in value.

— field pic flag differs in value.

— bottom_field flag is present in both and differs in value.

— nal _ref idc differs in value with one of the nal ref idc values being equal to 0.

— pic_order cnt type is equal to0 for both and either pic_order cnt Isb differs in value, or
delta_pic_order cnt bottom differs in value.

— pic order cnt type is equal tol for both and either delta pic order cnt[0] differs in value, or
delta pic order cnt[1] differs in value.

— IdrPicFlag differs in value.
— IdrPicFlag is equal to 1 for both and idr_pic_id differs in value.

NOTE 2 — Some of the VCL NAL units in redundant coded pictures or some non-VCL NAL units (e.g., an access unit delimiter
NAL unit) may also be used for the detection of the boundary between access units, and may therefore aid in the detection of the
start of a new primary coded picture.

7.4.1.2.5 Order of VCL NAL unitsand association to coded pictures

This subclause specifies the order of VCL NAL units and association to coded pictures for coded video sequences that
conform to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in
clauses 2-9.

Each VCL NAL unit is part of a coded picture.
The order of the VCL NAL units within a coded IDR picture is constrained as follows.

— If arbitrary slice order is allowed as specified in Annex A, coded slice of an IDR picture NAL units may have any
order relative to each other.

— Otherwise (arbitrary slice order is not allowed), the following applies.

— Ifseparate colour plane flag is equal to 0, coded slice of an IDR picture NAL units of a slice group shall not
be interleaved with coded slice of an IDR picture NAL units of another slice group and the order of coded
slice of an IDR picture NAL units within a slice group shall be in the order of increasing macroblock address
for the first macroblock of each coded slice of an IDR picture NAL unit of the particular slice group.

— Otherwise (separate_colour plane flag is equal to 1), coded slice of an IDR picture NAL units of a slice
group for a particular value of colour plane id shall not be interleaved with coded slice of an IDR picture
NAL units of another slice group with the same value of colour plane id and the order of coded slices of
IDR picture NAL units within a slice group for a particular value of colour plane id shall be in the order of
increasing macroblock address for the first macroblock of each coded slice of an IDR picture NAL unit of the
particular slice group having the particular value of colour plane id.

NOTE 1 — When separate_colour_plane_flag is equal to 1, the relative ordering of coded slices having different values
of colour_plane id is not constrained.

ITU-T Rec. H.264 (11/2007) 65

The order of the VCL NAL units within a coded non-IDR picture is constrained as follows.

— If arbitrary slice order is allowed as specified in Annex A, coded slice of a non-IDR picture NAL units or coded
slice data partition A NAL units may have any order relative to each other. A coded slice data partition A NAL unit
with a particular value of slice id shall precede any present coded slice data partition B NAL unit with the same
value of slice id. A coded slice data partition A NAL unit with a particular value of slice id shall precede any
present coded slice data partition C NAL unit with the same value of slice_id. When a coded slice data partition B
NAL unit with a particular value of slice id is present, it shall precede any present coded slice data partition C
NAL unit with the same value of slice id.

— Otherwise (arbitrary slice order is not allowed), the following applies.

— If separate_colour plane flag is equal to 0, coded slice of a non-IDR picture NAL units or coded slice data
partition NAL units of a slice group shall not be interleaved with coded slice of a non-IDR picture NAL units
or coded slice data partition NAL units of another slice group and the order of coded slice of a non-IDR
picture NAL units or coded slice data partition A NAL units within a slice group shall be in the order of
increasing macroblock address for the first macroblock of each coded slice of a non-IDR picture NAL unit or
coded slice data partition A NAL unit of the particular slice group. A coded slice data partition A NAL unit
with a particular value of slice_id shall immediately precede any present coded slice data partition B NAL
unit with the same value of slice id. A coded slice data partition A NAL unit with a particular value of
slice_id shall immediately precede any present coded slice data partition C NAL unit with the same value of
slice_id, when a coded slice data partition B NAL unit with the same value of slice id is not present. When a
coded slice data partition B NAL unit with a particular value of slice id is present, it shall immediately
precede any present coded slice data partition C NAL unit with the same value of slice id.

— Otherwise (separate_colour plane flag is equal to 1), coded slice of a non-IDR picture NAL units or coded
slice data partition NAL units of a slice group for a particular value of colour plane id shall not be
interleaved with coded slice of a non-IDR picture NAL units or coded slice data partition NAL units of
another slice group with the same value of colour_plane_id and the order of coded slice of a non-IDR picture
NAL units or coded slice data partition A NAL units within a slice group for particular value of
colour_plane id shall be in the order of increasing macroblock address for the first macroblock of each coded
slice of a non-IDR picture NAL unit or coded slice data partition A NAL unit of the particular slice group
having the particular value of colour plane id. A coded slice data partition A NAL unit associated with a
particular value of slice id and colour plane id shall immediately precede any present coded slice data
partition B NAL unit with the same value of slice_id and colour plane id. A coded slice data partition A
NAL unit associated with a particular value of slice id and colour plane id shall immediately precede any
present coded slice data partition C NAL unit with the same value of slice id and colour plane id, when a
coded slice data partition B NAL unit with the same value of slice id and colour plane id is not present.
When a coded slice data partition B NAL unit with a particular value of slice_id and colour_plane id is
present, it shall immediately precede any present coded slice data partition C NAL unit with the same value
of slice_id and colour_plane id.

NOTE 2 — When separate_colour_plane flag is equal to 1, the relative ordering of coded slices having different values
of colour_plane id is not constrained.

NAL units having nal unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL
unit of the primary coded picture within the access unit.

NAL units having nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, which are unspecified, may be present
in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal unit type in the range of 20 to 23, inclusive, shall not precede the first VCL NAL unit of the
primary coded picture within the access unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics
7421 Sequence parameter set RBSP semantics

7.4.2.1.1 Sequence parameter set data semantics
profile idc and level_idc indicate the profile and level to which the coded video sequence conforms.

constraint_setO_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in subclause
A.2.1. constraint_set0_flag equal to 0 indicates that the coded video sequence may or may not obey all constraints
specified in subclause A.2.1.

constraint_set1 flag equal to 1 indicates that the coded video sequence obeys all constraints specified in subclause
A.2.2. constraint setl flag equal to O indicates that the coded video sequence may or may not obey all constraints
specified in subclause A.2.2.

66 ITU-T Rec. H.264 (03/2005)

congtraint_set2 flag equal to 1 indicates that the coded video sequence obeys all constraints specified in subclause
A.2.3. constraint_set2 flag equal to 0 indicates that the coded video sequence may or may not obey all constraints
specified in subclause A.2.3.
NOTE 1 — When one or more than one of constraint_set0 flag, constraint_setl flag, or constraint _set2 flag are equal to 1, the
coded video sequence must obey the constraints of all of the indicated subclauses of subclause A.2. When profile_idc is equal to

44,100, 110, 122, or 244, the values of constraint set0 flag, constraint_setl flag, and constraint_set2 flag must all be equal to
0.

congtraint_set3 flag indicates the following.

— Ifprofile_idc is equal to 66, 77, or 88 and level idc is equal to 11, constraint set3 flag equal to 1 indicates that the
coded video sequence obeys all constraints specified in Annex A for level 1b and constraint set3 flag equal to 0
indicates that the coded video sequence may or may not obey all constraints specified in Annex A for level 1b.

— Otherwise, if profile idc is equal to 100 or 110, constraint set3 flag equal to 1 indicates that the coded video
sequence obeys all constraints specified in Annex A for the High 10 Intra profile, and constraint set3 flag equal to
0 indicates that the coded video sequence may or may not obey these corresponding constraints.

— Otherwise, if profile idc is equal to 122, constraint set3 flag equal to 1 indicates that the coded video sequence
obeys all constraints specified in Annex A for the High 4:2:2 Intra profile, and constraint set3 flag equal to 0
indicates that the coded video sequence may or may not obey these corresponding constraints.

— Otherwise, if profile idc is equal to 44, constraint_set3 flag shall be equal to 1. When profile_idc is equal to 44,
the value of 0 for constraint_set3 flag is forbidden.

— Otherwise, if profile_idc is equal to 244, constraint_set3 flag equal to 1 indicates that the coded video sequence
obeys all constraints specified in Annex A for the High 4:4:4 Intra profile, and constraint_set3 flag equal to 0
indicates that the coded video sequence may or may not obey these corresponding constraints.

— Otherwise (profile idc is equal to 66,77,or 88 and level idc is not equal to 11), the value of 1 for
constraint set3 flag is reserved for future use by ITU-T | ISO/IEC. constraint set3 flag shall be equal to 0 for
coded video sequences with profile idc equal to 66, 77, or 88 and level idc not equal to 11 in bitstreams
conforming to this Recommendation | International Standard. Decoders conforming to this Recommendation |
International Standard shall ignore the value of constraint_set3 flag when profile idc is equal to 66, 77, or 88 and
level idc is not equal to 11.

reserved_zero_4bits shall be equal to 0. Other values of reserved_zero 4bits may be specified in the future by ITU-T |
ISO/TEC. Decoders shall ignore the value of reserved zero_4bits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value
of seq parameter set id shall be in the range of 0 to 31, inclusive.
NOTE 2 — When feasible, encoders should use distinct values of seq_parameter _set id when the values of other sequence

parameter set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of
seq_parameter_set id.

chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in subclause 6.2. The
value of chroma format idc shall be in the range of 0 to 3, inclusive. When chroma format idc is not present, it shall
be inferred to be equal to 1 (4:2:0 chroma format).

separate_colour_plane flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are
coded separately. separate_colour plane flag equal to 0 specifies that the colour components are not coded separately.
When separate colour plane flag is not present, it shall be inferred to be equal to 0. When separate colour plane flag
is equal to 1, the primary coded picture consists of three separate components, each of which consists of coded samples
of one colour plane (Y, Cb or Cr) that each use the monochrome coding syntax. In this case, each colour plane is
associated with a specific colour_plane_id value.

NOTE 3 — There is no dependency in decoding processes between the colour planes having different colour plane_id values. For
example, the decoding process of a monochrome picture with one value of colour plane id does not use any data from
monochrome pictures having different values of colour plane id for inter prediction.

Depending on the value of separate colour plane flag, the value of the variable ChromaArrayType is assigned as
follows.

— Ifseparate_colour plane flag is equal to 0, ChromaArrayType is set equal to chroma format_idc.

— Otherwise (separate_colour plane flag is equal to 1), ChromaArrayType is set equal to 0.

bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array and the value of the luma quantisation
parameter range offset QpBdOffsety, as specified by

BitDepthy = 8 + bit_depth_luma minus8 (7-2)

ITU-T Rec. H.264 (11/2007) 67

QpBdOffsety = 6 * bit_depth luma minus8 (7-3)

When bit_depth luma minus8 is not present, it shall be inferred to be equal to 0. bit_depth luma_minus8 shall be in
the range of 0 to 6, inclusive.

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays and the value of the chroma
quantisation parameter range offset QpBdOffsetc, as specified by

BitDepthc = 8 + bit_depth chroma minus8 (7-4)

QpBdOffsetc = 6 * (bit_depth chroma minus8 + residual colour transform flag) (7-5)

When bit_depth_chroma minus8 is not present, it shall be inferred to be equal to 0. bit_depth chroma_minus8 shall be
in the range of 0 to 6, inclusive.
NOTE 4 — The value of bit_depth_chroma_minus8 is not used in the decoding process when ChromaArrayType is equal to 0. In
particular, when separate_colour plane flag is equal to 1, each colour plane is decoded as a distinct monochrome picture using
the luma component decoding process (except for the selection of scaling matrices) and the luma bit depth is used for all three
colour components.

The variable RawMbBits is derived as

RawMBbBits = 256 * BitDepthy + 2 * MbWidthC * MbHeightC * BitDepthc (7-6)

gpprime_y_zero_transform_bypass flag equal to 1 specifies that, when QP'y is equal to 0, a transform bypass
operation for the transform coefficient decoding process and picture construction process prior to deblocking filter
process as specified in subclause 8.5 shall be applied. gpprime y zero transform bypass flag equal to 0 specifies that
the transform coefficient decoding process and picture construction process prior to deblocking filter process shall not
use the transform bypass operation. When gqpprime_y zero_transform_bypass_flag is not present, it shall be inferred to
be equal to 0.

seq_scaling_matrix_present_flag equal to 1 specifies that the flags seq scaling list present flag[i] for i = 0..7 or
i=0..11 are present. seq scaling matrix_present flag equal to O specifies that these flags are not present and the
sequence-level scaling list specified by Flat 4x4 16 shall be inferred for i = 0..5 and the sequence-level scaling list
specified by Flat 8x8 16 shall be inferred for i = 6..11. When seq_scaling_matrix_present flag is not present, it shall
be inferred to be equal to 0.

The scaling lists Flat 4x4 16 and Flat_8x8 16 are specified as follows:

Flat 4x4 16[i]=16, withi=0.15, (7-7)

Flat 8x8 16[i]=16, withi=0..63. (7-8)

seq_scaling_list_present flag[i] equal to 1 specifies that the syntax structure for scaling list i is present in the
sequence parameter set. seq_scaling_list present flag[i] equal to 0 specifies that the syntax structure for scaling list i
is not present in the sequence parameter set and the scaling list fall-back rule set A specified in Table 7-2 shall be used
to infer the sequence-level scaling list for index i.

68 ITU-T Rec. H.264 (03/2005)

Table 7-2 — Assignment of mnemonic namesto scaling list indices and specification of fall-back rule

Value of Mnemonic name | Block MB Component Scaling list Scaling list Default
scaling list size | prediction fall-back rule | fall-back rule scaling list
index type set A set B
0 Sl 4x4 Intra Y 4x4 Intra Y default sequence-level | Default 4x4 Intra
scaling list scaling list
1 S1 4x4 Intra_Cb 4x4 Intra Cb scaling list scaling list Default 4x4 Intra
fori=0 fori=0
2 S1 4x4 Intra Cr 4x4 Intra Cr scaling list scaling list Default 4x4 Intra
fori=1 fori=1
3 Sl 4x4 Inter Y 4x4 Inter Y default sequence-level | Default 4x4 Inter
scaling list scaling list
4 S1_4x4 Inter_Cb 4x4 Inter Cb scaling list scaling list Default_4x4_Inter
fori=3 fori=3
5 S1 4x4 Inter Cr 4x4 Inter Cr scaling list scaling list Default_4x4_Inter
fori=4 fori=4
6 S1 8x8 Intra Y 8x8 Intra Y default sequence-level | Default 8x8 Intra
scaling list scaling list
7 S1 8x8 Inter Y 8x8 Inter Y default sequence-level | Default 8x8 Inter
scaling list scaling list
8 S1_8x8_Intra_Cb 8x8 Intra Cb scaling list scaling list Default 8x8 Intra
fori=6 fori=6
9 S1 8x8 Inter Cb 8x8 Inter Cb scaling list scaling list Default 8x8 Inter
fori=7 fori=7
10 S1 8x8 Intra_Cr 8x8 Intra Cr scaling list scaling list Default 8x8 Intra
fori=8 fori=8
11 S1 8x8 Inter Cr 8x8 Inter Cr scaling list scaling list Default 8x8 Inter
fori=9 fori=9

Table 7-3 specifies the default scaling lists Default 4x4 Intra and Default 4x4 Inter. Table 7-4 specifies the default

scaling lists Default 8x8 Intra and Default 8x8 Inter.

Table 7-3 — Specification of default scaling lists Default_4x4 Intra and Default_4x4 Inter

idx 0o|1|2|3|4|5|6|7|8|9|10][11]|12|13]14]15
Default_4x4 Intrafidx] | 6 [13|13 |20 |20 |20 |28 |28 |28 |28 (32|32 |32 (37|37 |42
Default_4x4 Inter[idx] |10 | 14 | 14 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | 27 | 27 | 27 | 30 | 30 | 34

ITU-T Rec. H.264 (11/2007) 69

Table 7-4 — Specification of default scaling lists Default_8x8 Intra and Default_8x8 Inter

idx 0/1,2|3|4|5|6|7|8|9]10|11|12|13|14]|15

Default_8x8 Intra[idx] |6 | 10|10 | 13 | 11| 13| 16| 16| 16| 16| 18|18 |18 |18 |18 |23

Default_8x8 Inter[idx] |9 |13 |13 15[13|15 17|17 |17 |17|19]19| 19| 19| 1921

Table 7-4 (continued) — Specification of default scaling lists Default_8x8 Intra and Default_8x8 Inter

idx 16| 17|18|119| 20|21 (22|23 |24|25|26|27|28|29|30|31

Default_8x8 Intra[idx] |23 |23 2323 |23 (2525 |25|25(25|25|25|27|27|27|27

Default_8x8 Inter[idx] |21 |21 |21 |21 |21 |22 |22 (22|22 |22|22|22 |24 |24 |24 |24

Table 7-4 (continued) — Specification of default scaling lists Default_8x8 Intra and Default_8x8 Inter

idx 32133343536 |37(38|39|40|41 |42 |43 |44 |45|46 |47

Default_8x8_Intra[idx] |27 [27 |27 272929 (29|29 (29|29 |29 |31 |31|31|31]31

Default_8x8_Inter[idx] |24 |24 |24 |24 [2525|2525 |25 |25|25|27 (27|27 |27]27

Table 7-4 (concluded) — Specification of default scaling lists Default_8x8 Intra and Default_8x8 Inter

idx 48 | 49 |50 | 51 | 52 |53 |54 | 55|56 |57 58|59 |60|61|62|63

Default_8x8 Intra[idx] |31 |33 (33 (33|33|33[36|36|36|36|38|38|38|40]40]|42

Default_8x8_Inter[idx] |27 |28 |28 |28 |28 |28 |30 |30 |30 (30|32|32(32|33|33]|35

log2_max_frame_num_minus4 specifies the value of the variable MaxFrameNum that is used in frame num related
derivations as follows:

MaxFrameNum = 2(log2_max_frame num_minus4 +4) (7_9)
The value of log2 max frame num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause 8.2.1). The value of
pic_order cnt_type shall be in the range of 0 to 2, inclusive.

pic_order cnt type shall not be equal to 2 in a coded video sequence that contains any of the following:

— an access unit containing a non-reference frame followed immediately by an access unit containing a
non-reference picture;

— two access units each containing a field with the two fields together forming a complementary non-reference
field pair followed immediately by an access unit containing a non-reference picture;

— an access unit containing a non-reference field followed immediately by an access unit containing another
non-reference picture that does not form a complementary non-reference field pair with the first of the two
access units.

log2_max_pic_order_cnt_Isb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the
decoding process for picture order count as specified in subclause 8.2.1 as follows:

MaxPicOrderCntLsb = 2(log2_max_pic_order_cnt_Isb_minus4 + 4) (7_ 1 0)
The value of log2 max_pic_order _cnt Isb_minus4 shall be in the range of 0 to 12, inclusive.

delta_pic_order_always zero flag equal to 1 specifies that delta pic order cnt[0] and delta pic order cnt[1] are
not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta pic order always zero flag

70 ITU-T Rec. H.264 (03/2005)

equal to O specifies that delta pic order cnt[0] is present in the slice headers of the sequence and
delta pic_order cnt[1] may be present in the slice headers of the sequence.

offset for_non_ref_pic is used to calculate the picture order count of a non-reference picture as specified in 8.2.1. The
value of offset_for non_ref pic shall be in the range of -2*' to 2*' - 1, inclusive.

offset_for_top_to_bottom_field is used to calculate the picture order count of a bottom field as specified in subclause
8.2.1. The value of offset_for top_to bottom_field shall be in the range of -2*' to 2°*' - 1, inclusive.

num_ref frames in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in
subclause 8.2.1. The value of num_ref frames in pic_order cnt cycle shall be in the range of 0 to 255, inclusive.

offset_for_ref_frame[i] is an element of a list of num ref frames in pic order cnt cycle values used in the
decoding process for picture order count as specified in subclause 8.2.1. The value of offset for ref frame][i] shall be
in the range of -2*' to 2*' - 1, inclusive.

num_ref_frames specifies the maximum number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of
any picture in the sequence. num_ref frames also determines the size of the sliding window operation as specified in
subclause 8.2.5.3. The value of num_ref frames shall be in the range of 0 to MaxDpbSize (as specified in subclause
A.3.1 or A.3.2), inclusive.

gaps in_frame_num_value allowed_flag specifies the allowed values of frame num as specified in subclause 7.4.3
and the decoding process in case of an inferred gap between values of frame num as specified in subclause 8.2.5.2.

pic_width_in_mbs_minusl plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as follows:

PicWidthInMbs = pic_width_in_mbs_minus]l + 1 (7-11)

The variable for picture width for the luma component is derived as follows:

PicWidthInSamples, = PicWidthInMbs * 16 (7-12)

The variable for picture width for the chroma components is derived as follows:

PicWidthInSamplesc = PicWidthInMbs * MbWidthC (7-13)

pic_height_in_map_units minusl plus 1 specifies the height in slice group map units of a decoded frame or field.

The variables PicHeightiInMapUnits and PicSizeInMapUnits are derived as follows:

PicHeightInMapUnits = pic_height_in_map_units_minusl + 1 (7-14)
PicSizeInMapUnits = PicWidthInMbs * PicHeightiInMapUnits (7-15)

frame_mbs_only_flag equal to 0 specifies that coded pictures of the coded video sequence may either be coded fields
or coded frames. frame mbs_only flag equal to 1 specifies that every coded picture of the coded video sequence is a
coded frame containing only frame macroblocks.

The allowed range of values for pic width in_mbs minusl, pic_height in map units minusl, and
frame_mbs_only flag is specified by constraints in Annex A.

Depending on frame _mbs_only flag, semantics are assigned to pic_height in_map units minusl as follows:

— If frame_mbs_only flag is equal to 0, pic_height in_map units minusl plus 1 is the height of a field in units of
macroblocks.

— Otherwise (frame mbs_only flag is equal to 1), pic_height in map units minusl plus 1 is the height of a frame
in units of macroblocks.

The variable FrameHeightInMbs is derived as follows:

FrameHeightInMbs = (2 — frame mbs_only flag) * PicHeightInMapUnits (7-16)

ITU-T Rec. H.264 (11/2007) 71

mb_adaptive frame field_flag equal to 0 specifies no switching between frame and field macroblocks within a
picture. mb_adaptive frame field flag equal to 1 specifies the possible use of switching between frame and field
macroblocks within frames. When mb_adaptive frame field flag is not present, it shall be inferred to be equal to 0.

direct_8x8_inference flag specifies the method used in the derivation process for luma motion vectors for B_Skip,
B Direct 16x16 and B Direct 8x8 as specified in subclause 8.4.1.2. When frame mbs only flag is equal to 0,
direct 8x8 inference flag shall be equal to 1.

frame_cropping_flag equal to 1 specifies that the frame cropping offset parameters follow next in the sequence
parameter set. frame_cropping_flag equal to 0 specifies that the frame cropping offset parameters are not present.

frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset, frame_crop_bottom_offset specify the
samples of the pictures in the coded video sequence that are output from the decoding process, in terms of a rectangular
region specified in frame coordinates for output.

The variables CropUnitX and CropUnitY are derived as follows:
— If ChromaArrayType is equal to 0, CropUnitX and CropUnitY are derived as

CropUnitX =1 (7-17)

CropUnitY =2 — frame_mbs_only flag (7-18)

— Otherwise (ChromaArrayType is equal to 1, 2, or 3), CropUnitX and CropUnitY are derived as
CropUnitX = SubWidthC (7-19)

CropUnitY = SubHeightC * (2 — frame_mbs_only flag) (7-20)

The frame cropping rectangle contains Iuma samples with horizontal frame coordinates from
CropUnitX * frame crop left offset to PicWidthInSamples; — (CropUnitX * frame crop right offset+1) and
vertical frame coordinates from CropUnitY * frame crop top offset to (16 * FrameHeightInMbs) —
(CropUnitY * frame crop bottom_offset + 1), inclusive. The value of frame crop left offset shall be in the range of
0 to (PicWidthInSamples; / CropUnitX) — (frame crop right offset+ 1), inclusive; and the value of
frame crop top offset shall be in the range of 0 to (16* FrameHeightinMbs /CropUnitY)—
(frame crop bottom_offset + 1), inclusive.

When frame cropping flag is equal to 0O, the values of frame crop left offset, frame crop right offset,
frame crop top offset, and frame crop bottom_offset shall be inferred to be equal to 0.

When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the
samples having frame coordinates (x / SubWidthC, y / SubHeightC), where (x, y) are the frame coordinates of the
specified luma samples.

For decoded fields, the specified samples of the decoded field are the samples that fall within the rectangle specified in
frame coordinates.

vui_parameters present_flag equal to 1 specifies that the vui_parameters() syntax structure as specified in Annex E
is present. vui_parameters_present_flag equal to 0 specifies that the vui_parameters() syntax structure as specified in
Annex E is not present.

742111 Scalinglist semantics

delta_scaleis used to derive the j-th element of the scaling list for j in the range of 0 to sizeOfScalingList - 1, inclusive.
The value of delta_scale shall be in the range of -128 to +127, inclusive.

When useDefaultScalingMatrixFlag is derived to be equal to 1, the scaling list shall be inferred to be equal to the
default scaling list as specified in Table 7-2.

7.4.2.1.2 Sequence parameter set extension RBSP semantics

seq_parameter_set_id identifies the sequence parameter set associated with the sequence parameter set extension. The
value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

aux_format_idc equal to O indicates that there are no auxiliary coded pictures in the coded video sequence.
aux_format idc equal to 1 indicates that exactly one auxiliary coded picture is present in each access unit of the coded
video sequence, and that for alpha blending purposes the decoded samples of the associated primary coded picture in

72 ITU-T Rec. H.264 (03/2005)

each access unit should be multiplied by the interpretation sample values of the auxiliary coded picture in the access
unit in the display process after output from the decoding process. aux_format idc equal to 2 indicates that exactly one
auxiliary coded picture exists in each access unit of the coded video sequence, and that for alpha blending purposes the
decoded samples of the associated primary coded picture in each access unit should not be multiplied by the
interpretation sample values of the auxiliary coded picture in the access unit in the display process after output from the
decoding process. aux_format idc equal to 3 indicates that exactly one auxiliary coded picture exists in each access unit
of the coded video sequence, and that the usage of the auxiliary coded pictures is unspecified. The value of
aux_format idc shall be in the range of 0 to 3, inclusive. Values greater than 3 for aux format idc are reserved to
indicate the presence of exactly one auxiliary coded picture in each access unit of the coded video sequence for
purposes to be specified in the future by ITU-T | ISO/IEC. When aux_format idc is not present, it shall be inferred to be
equal to 0.

NOTE 1 — Decoders conforming to this Recommendation | International Standard are not required to decode auxiliary coded

pictures.

bit_depth_aux_minus8 specifies the bit depth of the samples of the sample array of the auxiliary coded picture.
bit_depth_aux_minus8 shall be in the range of 0 to 4, inclusive.

alpha_incr_flag equal to 0 indicates that the interpretation sample value for each decoded auxiliary coded picture
sample value is equal to the decoded auxiliary coded picture sample value for purposes of alpha blending.
alpha_incr_flag equal to 1 indicates that, for purposes of alpha blending, after decoding the auxiliary coded picture
samples, any auxiliary coded picture sample value that is greater than Min(alpha opaque value,
alpha transparent value) should be increased by one to obtain the interpretation sample value for the auxiliary coded
picture sample, and any auxiliary coded picture sample value that is less than or equal to Min(alpha opaque value,
alpha transparent value) should be used without alteration as the interpretation sample value for the decoded auxiliary
coded picture sample value.

alpha_opaque_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered opaque for purposes of alpha blending. The
number of bits used for the representation of the alpha opaque value syntax element is bit_ depth _aux_minus8 + 9 bits.

alpha_transparent_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered transparent for purposes of alpha blending.
The number of bits used for the representation of the alpha transparent value syntax element is
bit depth aux minus8 + 9 bits.

When alpha incr flag is equal to 1, alpha transparent value shall not be equal to alpha opaque value and
Log2(Abs(alpha opaque value —alpha transparent value)) shall have an integer value. A value of
alpha transparent value that is equal to alpha opaque value indicates that the auxiliary coded picture is not intended
for alpha blending purposes.

NOTE 2 - For alpha blending purposes, alpha_opaque value may be greater than alpha_transparent value, or it may be less than

alpha_transparent value. Interpretation sample values should be clipped to the range of alpha opaque value to
alpha_transparent_value, inclusive.

The decoding of the sequence parameter set extension and the decoding of auxiliary coded pictures is not required for
conformance with this Recommendation | International Standard.

The syntax of each coded slice of an auxiliary coded picture shall obey the same constraints as a coded slice of a
redundant picture, with the following differences of constraints.

— The following applies in regard to whether the primary coded picture is an IDR picture:

— If the primary coded picture is an IDR picture, the auxiliary coded slice syntax shall correspond to that of a
slice having nal_unit_type equal to 5 (a slice of an IDR picture);

— Otherwise (the primary coded picture is not an IDR picture), the auxiliary coded slice syntax shall correspond
to that of a slice having nal unit_type equal to 1 (a slice of a non-IDR picture).

— The slices of an auxiliary coded picture (when present) shall contain all macroblocks corresponding to those of the
primary coded picture.

— redundant pic cnt shall be equal to 0 in all auxiliary coded slices.

The (optional) decoding process for the decoding of auxiliary coded pictures is the same as if the auxiliary coded
pictures were primary coded pictures in a separate coded video stream that differs from the primary coded pictures in
the current coded video stream in the following ways.

— The IDR or non-IDR status of each auxiliary coded picture shall be inferred to be the same as the IDR or non-IDR
status of the primary picture in the same access unit, rather than being inferred from the value of nal ref idc.

ITU-T Rec. H.264 (11/2007) 73

— The value of chroma format idc and the value of ChromaArrayType shall be inferred to be equal to 0 for the
decoding of the auxiliary coded pictures.

— The value of bit_depth_luma minus8 shall be inferred to be equal to bit depth aux minus8 for the decoding of
the auxiliary coded pictures.

NOTE 3 — Alpha blending composition is normally performed with a background picture B, a foreground picture F, and a
decoded auxiliary coded picture A, all of the same size. Assume for purposes of example illustration that the chroma resolution
of B and F have been upsampled to the same resolution as the luma. Denote corresponding samples of B, F and A by b, fand a,
respectively. Denote luma and chroma samples by subscripts Y, Cb and Cr.

Define the variables alphaRange, alphaFwt and alphaBwt as follows:
alphaRange = Abs(alpha_opaque value - alpha_transparent value)
alphaFwt = Abs(a - alpha_transparent value)
alphaBwt = Abs(a - alpha_opaque_value)
Then, in alpha blending composition, samples d of the displayed picture D may be calculated as
dy = (alphaFwt*fy + alphaBwt*by + alphaRange/2) / alphaRange
dcg = (alphaFwt*fcg + alphaBwt*bcg + alphaRange/2) / alphaRange
dcgr = (alphaFwt*fcp + alphaBwt*bcg + alphaRange/2) / alphaRange

The samples of pictures D, F and B could also represent red, green, and blue component values (see subclause E.2.1). Here we
have assumed Y, Cb and Cr component values. Each component, e.g., Y, is assumed for purposes of example illustration above
to have the same bit depth in each of the pictures D, F and B. However, different components, e.g., Y and Cb, need not have the
same bit depth in this example.

When aux_format _idc is equal to 1, F would be the decoded picture obtained from the decoded luma and chroma, and A would
be the decoded picture obtained from the decoded auxiliary coded picture. In this case, the indicated example alpha blending
composition involves multiplying the samples of F by factors obtained from the samples of A.

A picture format that is useful for editing or direct viewing, and that is commonly used, is called pre-multiplied-black video. If
the foreground picture was F, then the pre-multiplied-black video S is given by

sy = (alphaFwt*fy)/ alphaRange

scg = (alphaFwt*{cp) / alphaRange

scr = (alphaFwt*fcR) / alphaRange
Pre-multiplied-black video has the characteristic that the picture S will appear correct if displayed against a black background.
For a non-black background B, the composition of the displayed picture D may be calculated as

dy = sy + (alphaBwt*by + alphaRange/2) / alphaRange

dcp = scp * (alphaBwt*bcp + alphaRange/2) / alphaRange

dcr = scr T (alphaBwt*bcg + alphaRange/2) / alphaRange
When aux_format_idc is equal to 2, S would be the decoded picture obtained from the decoded luma and chroma, and A would

again be the decoded picture obtained from the decoded auxiliary coded picture. In this case, alpha blending composition does
not involve multiplication of the samples of S by factors obtained from the samples of A.

additional_extension_flag equal to 0 indicates that no additional data follows within the sequence parameter set
extension syntax structure prior to the RBSP trailing bits. The value of additional extension flag shall be equal to 0.
The value of 1 for additional extension flag is reserved for future use by ITU-T | ISO/IEC. Decoders that conform to
this Recommendation | International Standard shall ignore all data that follows the value of 1 for
additional extension_flag in a sequence parameter set extension NAL unit.

7.4.2.2 Pictureparameter set RBSP semantics

pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of
pic_parameter set id shall be in the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq parameter set _id shall be in the
range of 0 to 31, inclusive.

entropy_coding_mode flag selects the entropy decoding method to be applied for the syntax elements for which two
descriptors appear in the syntax tables as follows.

— Ifentropy coding mode_flag is equal to 0, the method specified by the left descriptor in the syntax table is applied
(Exp-Golomb coded, see subclause 9.1 or CAVLC, see subclause 9.2).

— Otherwise (entropy coding mode flag is equal to 1), the method specified by the right descriptor in the syntax
table is applied (CABAC, see subclause 9.3).

pic_order_present_flag equal to 1 specifies that the picture order count related syntax elements are present in the slice
headers as specified in subclause 7.3.3. pic_order present flag equal to 0 specifies that the picture order count related
syntax elements are not present in the slice headers.

74 ITU-T Rec. H.264 (03/2005)

num_slice_groups minusl plus 1 specifies the number of slice groups for a picture. When num_slice _groups minus]
is equal to 0, all slices of the picture belong to the same slice group. The allowed range of num_slice_groups_minus1 is
specified in Annex A.

slice_group_map_type specifies how the mapping of slice group map units to slice groups is coded. The value of
slice_group_map_type shall be in the range of 0 to 6, inclusive.

slice_group _map_type equal to 0 specifies interleaved slice groups.
slice_group _map_type equal to 1 specifies a dispersed slice group mapping.
slice_group map_type equal to 2 specifies one or more “foreground” slice groups and a “leftover” slice group.

slice_group map_type values equal to 3, 4, and 5 specify changing slice groups. When num_slice _groups minus1 is
not equal to 1, slice_group_map_type shall not be equal to 3, 4, or 5.

slice_group map_type equal to 6 specifies an explicit assignment of a slice group to each slice group map unit.

Slice group map units are specified as follows.

— If frame _mbs _only flag is equal to 0 and mb_adaptive frame field flag is equal to 1 and the coded picture is a
frame, the slice group map units are macroblock pair units.

— Otherwise, if frame _mbs_only flag is equal to 1 or a coded picture is a field, the slice group map units are units of
macroblocks.

— Otherwise (frame mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and the coded
picture is a frame), the slice group map units are units of two macroblocks that are vertically contiguous as in a
frame macroblock pair of an MBAFF frame.

run_length_minusl| i] is used to specify the number of consecutive slice group map units to be assigned to the i-th
slice group in raster scan order of slice group map units. The value of run_length minus1[i] shall be in the range of 0
to PicSizeInMapUnits - 1, inclusive.

top_left[1] and bottom_right[i] specify the top-left and bottom-right corners of a rectangle, respectively. top left[i]

and bottom_right[i] are slice group map unit positions in a raster scan of the picture for the slice group map units. For

each rectangle 1, all of the following constraints shall be obeyed by the values of the syntax elements top left[i | and

bottom_right[i]

— top_left[i] shall be less than or equal to bottom right[i] and bottom right[i] shall be less than
PicSizeInMapUnits.

— (top_left[i] % PicWidthInMbs) shall be less than or equal to the value of (bottom_right[i | % PicWidthInMbs).

slice_group_change direction_flag is used with slice group map type to specify the refined map type when
slice_group map typeis 3, 4, or 5.

dlice_group_change rate minusl is used to specify the variable SliceGroupChangeRate. SliceGroupChangeRate
specifies the multiple in number of slice group map units by which the size of a slice group can change from one picture
to the next. The value of slice _group change rate minusl shall be in the range of 0 to PicSizeInMapUnits — 1,
inclusive. The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group change rate minusl + 1 (7-21)

pic_size in_map_units minusl is used to specify the number of slice group map units in the picture.
pic_size in _map units minus! shall be equal to PicSizeInMapUnits - 1.

dlice_group_id[i] identifies a slice group of the i-th slice group map unit in raster scan order. The size of the
slice_group id[i] syntax element is Ceil(Log2(num_slice groups minusl + 1)) bits. The value of slice _group id[i]
shall be in the range of 0 to num_slice groups minusl, inclusive.

num_ref_idx_10_active_minusl specifies the maximum reference index for reference picture list 0 that shall be used to
decode each slice of the picture in which list 0 prediction is used when num_ref idx_active override flag is equal to 0
for the slice. When MbaffFrameFlag is equal to 1, num_ref idx 10 active minusl is the maximum index value for the
decoding of frame macroblocks and 2 * num ref idx 10 active minusl + 1 is the maximum index value for the
decoding of field macroblocks. The value of num_ref idx 10 active minusl shall be in the range of 0 to 31, inclusive.

num_ref idx_I1 active minusl has the same semantics as num_ref idx 10 active_minus] with 10 and list 0 replaced
by 11 and list 1, respectively.

weighted_pred_flag equal to O specifies that weighted prediction shall not be applied to P and SP slices.
weighted pred flag equal to 1 specifies that weighted prediction shall be applied to P and SP slices.

ITU-T Rec. H.264 (11/2007) 75

weighted_bipred_idc equal to 0 specifies that the default weighted prediction shall be applied to B slices.
weighted bipred idc equal to 1 specifies that explicit weighted prediction shall be applied to B slices.
weighted bipred idc equal to 2 specifies that implicit weighted prediction shall be applied to B slices. The value of
weighted bipred idc shall be in the range of 0 to 2, inclusive.

pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPy for each slice. The initial value is modified at the
slice layer when a non-zero value of slice qp delta is decoded, and is modified further when a non-zero value of
mb_qp_delta is decoded at the macroblock layer. The value of pic_init qp_minus26 shall be in the range of
-(26 + QpBdOffsety) to +25, inclusive.

pic_init_qgs minus26 specifies the initial value minus 26 of SliceQSy for all macroblocks in SP or SI slices. The initial
value is modified at the slice layer when a non-zero value of slice gs delta is decoded. The value of
pic_init gs_minus26 shall be in the range of -26 to +25, inclusive.

chroma_qgp_index_offset specifies the offset that shall be added to QPy and QSy for addressing the table of QPc
values for the Cb chroma component. The value of chroma qp index offset shall be in the range of -12 to +12,
inclusive.

deblocking_filter_control_present_flag equal to 1 specifies that a set of syntax elements controlling the characteristics
of the deblocking filter is present in the slice header. deblocking_filter control present flag equal to O specifies that the
set of syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their
inferred values are in effect.

congtrained_intra_pred_flag equal to O specifies that intra prediction allows usage of residual data and decoded
samples of neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of
macroblocks coded using Intra macroblock prediction modes. constrained intra pred flag equal to 1 specifies
constrained intra prediction, in which case prediction of macroblocks coded using Intra macroblock prediction modes
only uses residual data and decoded samples from I or SI macroblock types.

redundant_pic_cnt_present_flag equal to 0 specifies that the redundant_pic_cnt syntax element is not present in slice
headers, data partitions B, and data partitions C that refer (either directly or by association with a corresponding data
partition A) to the picture parameter set. redundant pic_cnt present flag equal to 1 specifies that the redundant pic_cnt
syntax element is present in all slice headers, data partitions B, and data partitions C that refer (either directly or by
association with a corresponding data partition A) to the picture parameter set.

transform_8x8 mode flag equal to 1 specifies that the 8x8 transform decoding process may be in use (see
subclause 8.5). transform 8x8 mode flag equal to 0 specifies that the 8x8 transform decoding process is not in use.
When transform 8x8 mode_flag is not present, it shall be inferred to be 0.

pic_scaling_matrix_present_flag equal to 1 specifies that parameters are present to modify the scaling lists specified
in the sequence parameter set. pic_scaling matrix_present flag equal to O specifies that the scaling lists used for the
picture shall be inferred to be equal to those specified by the sequence parameter set. When
pic_scaling matrix_present flag is not present, it shall be inferred to be equal to 0.

pic_scaling_list_present_flag[i] equal to 1 specifies that the scaling list syntax structure is present to specify the
scaling list for index i. pic_scaling_list present flag[i] equal to 0 specifies that the syntax structure for scaling list i is
not present in the picture parameter set and that depending on the value of seq scaling matrix_present flag, the
following applies.

— Ifseq scaling matrix_present flag is equal to 0, the scaling list fall-back rule set A as specified in Table 7-2 shall
be used to derive the picture-level scaling list for index i.

— Otherwise (seq_scaling_matrix_present_flag is equal to 1), the scaling list fall-back rule set B as specified in
Table 7-2 shall be used to derive the picture-level scaling list for index i.

second_chroma_gp_index_offset specifies the offset that shall be added to QPy and QSy for addressing the table of
QP¢ values for the Cr chroma component. The value of second chroma qp_index offset shall be in the range of -12 to
+12, inclusive.

When second_chroma qp_index offset is not present, it shall be inferred to be equal to chroma_qp_index_offset.

NOTE — When ChromaArrayType is equal to 0, the values of bit depth chroma minus8, chroma qp index_offset and
second chroma qp_index offset are not used in the decoding process. In particular, when separate_colour plane flag is equal
to 1, each colour plane is decoded as a distinct monochrome picture using the luma component decoding process (except for the
selection of scaling matrices), including the application of the luma quantisation parameter derivation process without application
of an offset for the decoding of the pictures having colour plane_id not equal to 0.

76 ITU-T Rec. H.264 (03/2005)

74.2.3 Supplemental enhancement infor mation RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of
coded pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement infor mation message semantics

An SEI NAL unit contains one or more SEI messages. Each SEI message consists of the variables specifying the type
payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex D. The derived SEI payload
size payloadSize is specified in bytes and shall be equal to the number of bytes in the SEI payload.

ff_byte is a byte equal to OXFF identifying a need for a longer representation of the syntax structure that it is used
within.

last_payload_type byteis the last byte of the payload type of an SEI message.
last_payload_size byteis the last byte of the size of an SEI message.

7.4.2.4 Accessunit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify
the detection of the boundary between access units. There is no normative decoding process associated with the access
unit delimiter.

primary_pic_type indicates that the slice_type values for all slices of the primary coded picture are members of the set
listed in Table 7-5 for the given value of primary_pic_type.

Table 7-5—Meaning of primary_pic_type

primary_pic_type | dlice_type valuesthat may be present in the primary coded picture

0 2,7
1 0,2,5,7

2 0,1,2,5,6,7

3 4,9

4 3,4,8,9

5 2,4,7,9

6 0,2,3,4,5,7,8,9

7 0,1,2,3,4,5,6,7,8,9

7.4.25 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any)
shall be an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No
normative decoding process is specified for an end of sequence RBSP.

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to
the end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are
empty. No normative decoding process is specified for an end of stream RBSP.

7.4.2.7 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for
a filler data RBSP.

ff_byteis a byte equal to OxFF.

74.2.8 Slicelayer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.

ITU-T Rec. H.264 (11/2007) 77

74.2.9 Slicedata partition RBSP semantics

7.4.29.1 Slicedata partition A RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Partition
A contains all syntax elements of category 2.

Category 2 syntax elements include all syntax elements in the slice header and slice data syntax structures other than the
syntax elements in the residual() syntax structure.

dlice_id identifies the slice associated with the data partition. The value of slice_id is constrained as follows.
— Ifseparate_colour plane flag is equal to 0, the following applies.

— If arbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture, in decoding
order, shall have slice_id equal to 0 and the value of slice id shall be incremented by one for each subsequent
slice of the coded picture in decoding order.

— Otherwise (arbitrary slice order is allowed), each slice shall have a unique slice id value within the set of slices
of the coded picture.

— Otherwise (separate_colour plane flag is equal to 1), the following applies.

— If arbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture having each
value of colour plane id, in decoding order, shall have slice_id equal to 0 and the value of slice id shall be
incremented by one for each subsequent slice of the coded picture having the same value of colour plane id,
in decoding order.

— Otherwise (arbitrary slice order is allowed) each slice shall have a unique slice id value within each set of
slices of the coded picture that have the same value of colour plane id.

The range of slice_id is specified as follows.
— If MbaffFrameFlag is equal to 0, slice_id shall be in the range of 0 to PicSizeInMbs - 1, inclusive.
— Otherwise (MbaffFrameFlag is equal to 1), slice id shall be in the range of O to PicSizeInMbs / 2 - 1, inclusive.

7.4.2.9.2 Slice data partition B RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into one to three separate partitions.
Slice data partition B contains all syntax elements of category 3.

Category 3 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types I and SI as specified in Table 7-10.

dlice_id has the same semantics as specified in subclause 7.4.2.9.1.

colour_plane id specifies the colour plane associated with the current slice RBSP when separate_colour_plane_flag is
equal to 1. The value of colour_plane id shall be in the range of 0 to 2, inclusive. colour_plane id equal to 0, 1, and 2
correspond to the Y, Cb, and Cr planes, respectively.

NOTE — There is no dependency between the decoding processes of pictures having different values of colour plane id.

redundant_pic_cnt shall be equal to 0 for slices and slice data partitions belonging to the primary coded picture. The
redundant_pic_cnt shall be greater than 0 for coded slices and coded slice data partitions in redundant coded pictures.
When redundant pic_cnt is not present, its value shall be inferred to be equal to 0. The value of redundant_pic_cnt shall
be in the range of 0 to 127, inclusive.

The presence of a slice data partition B RBSP is specified as follows.

— If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 3
in the slice data for a slice, a slice data partition B RBSP shall be present having the same value of slice id and
redundant_pic_cnt as in the slice data partition A RBSP.

— Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax
elements of category 3 in the slice data for a slice), no slice data partition B RBSP shall be present having the same
value of slice_id and redundant pic_cnt as in the slice data partition A RBSP.

7.4.2.9.3 Slice data partition C RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition C contains all syntax elements of category 4.

78 ITU-T Rec. H.264 (03/2005)

Category 4 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types P and B as specified in Table 7-10.

dlice_id has the same semantics as specified in subclause 7.4.2.9.1.
colour_plane _id has the same semantics as specified in subclause 7.4.2.9.2.
redundant_pic_cnt has the same semantics as specified in subclause 7.4.2.9.2.
The presence of a slice data partition C RBSP is specified as follows.

— If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 4
in the slice data for a slice, a slice data partition C RBSP shall be present having the same value of slice id and
redundant pic_cnt as in the slice data partition A RBSP.

— Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax
elements of category 4 in the slice data for a slice), no slice data partition C RBSP shall be present having the same
value of slice_id and redundant pic_cnt as in the slice data partition A RBSP.

7.4.2.10 RBSP dicetrailing bits semantics
cabac zero_word is a byte-aligned sequence of two bytes equal to 0x0000.

Let NumBytesInVcINALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a coded
picture.

Let BinCountsInNALunits be the number of times that the parsing process function DecodeBin(), specified in
subclause 9.3.3.2, is invoked to decode the contents of all VCL NAL units of a coded picture. When
entropy_coding_mode_flag is equal to 1, BinCountsInNALunits shall not exceed (32 + 3) * NumBytesInVcINALunits
+ (RawMbBits * PicSizeInMbs) + 32.
NOTE — The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be
met by inserting a number of cabac zero word syntax elements to increase the value of NumBytesInVcINALunits. Each

cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit
contents that result in requiring inclusion of an emulation_prevention_three byte for each cabac_zero word).

7.4.2.11 RBSP trailing bits semantics
rbsp_stop_one_bit shall be equal to 1.
rbsp_alignment_zero_bit shall be equal to 0.

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic parameter set id, frame num, field pic flag,
bottom _field flag, idr pic_id, pic_order cnt lIsb, delta pic_order cnt bottom, delta pic_order cnt[0],
delta_pic order cnt[1], sp_for switch flag, and slice_group change cycle shall be the same in all slice headers of a
coded picture.

first_mb_in_dice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed as
specified in Annex A, the value of first mb_in_slice is constrained as follows.

— If separate _colour plane flag is equal to 0, the value of first mb in slice shall not be less than the value of
first mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order.

— Otherwise (separate_colour plane flag is equal to 1), the value of first mb_in_slice shall not be less than the value
of first mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order and
has the same value of colour_plane _id.

The first macroblock address of the slice is derived as follows.

— If MbaffFrameFlag is equal to 0, first mb_in_slice is the macroblock address of the first macroblock in the slice,
and first mb_in_slice shall be in the range of 0 to PicSizeInMbs — 1, inclusive.

— Otherwise (MbaffFrameFlag is equal to 1), first mb_in_slice * 2 is the macroblock address of the first macroblock
in the slice, which is the top macroblock of the first macroblock pair in the slice, and first mb_in_slice shall be in
the range of 0 to PicSizeInMbs / 2 — 1, inclusive.

slice_type specifies the coding type of the slice according to Table 7-6.

ITU-T Rec. H.264 (11/2007) 79

Table 7-6 — Name association to dlice_type

dlice_type Name of dice type
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
SI (ST slice)
P (P slice)

B (B slice)

I (I slice)

SP (SP slice)
SI (SI slice)

Nl el IEN N o) RO, BN RUS N I (O Il el

slice_type values in the range 5..9 specify, in addition to the coding type of the current slice, that all other slices of the
current coded picture shall have a value of slice type equal to the current value of slice_type or equal to the current
value of slice_type — 5.

When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2, 4, 7, or 9.
When num_ref frames is equal to 0, slice_type shall be equal to 2, 4, 7, or 9.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter set id shall be in the
range of 0 to 255, inclusive.

colour_plane id specifies the colour plane associated with the current slice RBSP when separate_colour plane flag is
equal to 1. The value of colour plane id shall be in the range of 0 to 2, inclusive. colour plane id equal to 0, 1, and 2
correspond to the Y, Cb, and Cr planes, respectively.

NOTE 1 — There is no dependency between the decoding processes of pictures having different values of colour plane id.

frame_num is used as an identifier for pictures and shall be represented by log2 max_ frame num minus4 + 4 bits in
the bitstream. frame num is constrained as follows:

The variable PrevRefFrameNum is derived as follows.
— If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.
— Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set as follows.

— If the decoding process for gaps in frame num specified in subclause 8.2.5.2 was invoked by the decoding
process for an access unit that contained a non-reference picture that followed the previous access unit in
decoding order that contained a reference picture, PrevRefFrameNum is set equal to the value of frame num
for the last of the "non-existing" reference frames inferred by the decoding process for gaps in frame num
specified in subclause 8.2.5.2.

— Otherwise, PrevRefFrameNum is set equal to the value of frame num for the previous access unit in
decoding order that contained a reference picture.

The value of frame num is constrained as follows.
— Ifthe current picture is an IDR picture, frame num shall be equal to 0.

— Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access
unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame num
for the current picture shall not be equal to PrevRefFrameNum unless all of the following three conditions are true.

— the current picture and the preceding reference picture belong to consecutive access units in decoding order
— the current picture and the preceding reference picture are reference fields having opposite parity

— one or more of the following conditions is true
— the preceding reference picture is an IDR picture

— the preceding reference picture includes a memory management control operation syntax element equal
to5

80 ITU-T Rec. H.264 (03/2005)

NOTE 2 — When the preceding reference picture includes a memory management control_operation syntax
element equal to 5, PrevRefFrameNum is equal to 0.

— there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture does not have frame num equal to
PrevRefFrameNum

— there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture is not a reference picture

When the value of frame num is not equal to PrevRefFrameNum, the following applies.

— There shall not be any previous field or frame in decoding order that is currently marked as "used for short-term
reference" that has a value of frame num equal to any value taken on by the variable UnusedShortTermFrameNum
in the following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame num) (7-22)
UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

— The value of frame_num is constrained as follows.

— Ifgaps in_frame num_value allowed flag is equal to 0, the value of frame num for the current picture shall
be equal to (PrevRefFrameNum + 1) % MaxFrameNum.

— Otherwise (gaps_in_frame num_value allowed flag is equal to 1), the following applies.

— If frame num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the
bitstream that follow the previous reference picture and precede the current picture in decoding order in
which either of the following conditions is true.

— The value of frame_num for the non-reference picture is less than PrevRefFrameNum.

— The value of frame num for the non-reference picture is greater than the value of frame num for
the current picture.

— Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference pictures in
the bitstream that follow the previous reference picture and precede the current picture in decoding order
in which both of the following conditions are true.

— The value of frame num for the non-reference picture is less than PrevRefFrameNum.

— The value of frame num for the non-reference picture is greater than the value of frame num for
the current picture.

A picture including a memory management control operation equal to 5 shall have frame num constraints as
described above and, after the decoding of the current picture and the processing of the memory management control
operations, the picture shall be inferred to have had frame num equal to O for all subsequent use in the decoding
process, except as specified in subclause 7.4.1.2.4.

NOTE 3 — When the primary coded picture is not an IDR picture and does not contain memory_management_control operation
syntax element equal to 5, the value of frame num of a corresponding redundant coded picture is the same as the value of
frame num in the primary coded picture. Alternatively, the redundant coded picture includes a
memory_management_control operation syntax element equal to 5 and the corresponding primary coded picture is an IDR
picture.

field_pic_flag equal to 1 specifies that the slice is a slice of a coded field. field pic flag equal to O specifies that the
slice is a slice of a coded frame. When field pic_flag is not present it shall be inferred to be equal to 0.

The variable MbaffFrameFlag is derived as follows

MbaffFrameFlag = (mb_adaptive frame field flag && !field pic flag) (7-23)

The variable for the picture height in units of macroblocks is derived as follows

PicHeightInMbs = FrameHeightInMbs / (1 + field pic flag) (7-24)

The variable for picture height for the luma component is derived as follows

PicHeightInSamples; = PicHeightInMbs * 16 (7-25)

ITU-T Rec. H.264 (11/2007) 81

The variable for picture height for the chroma component is derived as follows

PicHeightInSamplesc = PicHeightInMbs * MbHeightC (7-26)

The variable PicSizeInMbs for the current picture is derived according to:

PicSizeInMbs = PicWidthInMbs * PicHeightInMbs (7-27)

The variable MaxPicNum is derived as follows.

— Iffield pic_flag is equal to 0, MaxPicNum is set equal to MaxFrameNum.

— Otherwise (field pic_flag is equal to 1), MaxPicNum is set equal to 2*MaxFrameNum.
The variable CurrPicNum is derived as follows.

— Iffield pic flag is equal to 0, CurrPicNum is set equal to frame num.

— Otherwise (field pic_flag is equal to 1), CurrPicNum is set equal to 2 * frame num + 1.

bottom_field_flag equal to 1 specifies that the slice is part of a coded bottom field. bottom field flag equal to O
specifies that the picture is a coded top field. When this syntax element is not present for the current slice, it shall be
inferred to be equal to 0.

idr_pic_id identifies an IDR picture. The values of idr pic _id in all the slices of an IDR picture shall remain
unchanged. When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in
the slices of the first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value
of idr_pic_id shall be in the range of 0 to 65535, inclusive.

pic_order_cnt_lsb specifies the picture order count modulo MaxPicOrderCntLsb for the top field of a coded frame or
for a coded field. The size of the pic_order cnt Isb syntax element is log2 max pic_order cnt Isb minus4 + 4 bits.
The value of the pic_order cnt Isb shall be in the range of 0 to MaxPicOrderCntLsb — 1, inclusive.

delta_pic_order_cnt_bottom specifies the picture order count difference between the bottom field and the top field of
a coded frame as follows.

— If the current picture includes a memory management control operation equal to 5, the value of
delta_pic_order cnt_bottom shall be in the range of (1 — MaxPicOrderCntLsb) to 2*' - 1, inclusive.

— Otherwise (the current picture does not include a memory management control operation equal to 5), the value of
delta_pic_order cnt_bottom shall be in the range of —2*' to 2°*' - 1, inclusive.

When this syntax element is not present in the bitstream for the current slice, it shall be inferred to be equal to 0.

delta_pic_order_cnt[0] specifies the picture order count difference from the expected picture order count for the top
field of a coded frame or for a coded field as specified in subclause 8.2.1. The value of delta_pic_order cnt[0] shall be
in the range of -2*' to 2*' - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it
shall be inferred to be equal to 0.

delta_pic_order_cnt[1] specifies the picture order count difference from the expected picture order count for the
bottom field of a coded frame specified in subclause 8.2.1. The value of delta_pic_order cnt[1] shall be in the range of
-2*"t0 2°' - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be inferred
to be equal to 0.

redundant_pic_cnt shall be equal to 0 for slices and slice data partitions belonging to the primary coded picture. The
value of redundant_pic_cnt shall be greater than 0 for coded slices or coded slice data partitions of a redundant coded
picture. When redundant_pic_cnt is not present in the bitstream, its value shall be inferred to be equal to 0. The value of
redundant pic_cnt shall be in the range of 0 to 127, inclusive.

NOTE 4 — Any area of the decoded primary picture and the corresponding area that would result from application of the
decoding process specified in clause 8 for any redundant picture in the same access unit should be visually similar in appearance.

The value of pic_parameter set _id in a coded slice or coded slice data partition of a redundant coded picture shall be
such that the value of pic_order present flag in the picture parameter set in use in a redundant coded picture is equal to
the value of pic_order present flag in the picture parameter set in use in the corresponding primary coded picture.

When present in the primary coded picture and any redundant coded picture, the following syntax elements shall have
the same value: field pic flag, bottom field flag, and idr pic id.

82 ITU-T Rec. H.264 (03/2005)

When the value of nal_ref idc in one VCL NAL unit of an access unit is equal to 0, the value of nal ref idc in all other
VCL NAL units of the same access unit shall be equal to 0.
NOTE 5 — The above constraint also has the following implications. If the value of nal ref idc for the VCL NAL units of the
primary coded picture is equal to 0, the value of nal ref idc for the VCL NAL units of any corresponding redundant coded

picture are equal to 0; otherwise (the value of nal ref idc for the VCL NAL units of the primary coded picture is greater than 0),
the value of nal_ref idc for the VCL NAL units of any corresponding redundant coded picture are also greater than 0.

The marking status of reference pictures and the value of frame num after the decoded reference picture marking
process as specified in subclause 8.2.5 is invoked for the primary coded picture or any redundant coded picture of the
same access unit shall be identical regardless whether the primary coded picture or any redundant coded picture (instead
of the primary coded picture) of the access unit would be decoded.

NOTE 6 — The above constraint also has the following implications.

If a primary coded picture is not an IDR picture, the contents of the dec_ref pic_marking() syntax structure must be identical in

all slice headers of the primary coded picture and all redundant coded pictures corresponding to the primary coded picture.

Otherwise (a primary coded picture is an IDR picture), the following applies.

If a redundant coded picture corresponding to the primary coded picture is an IDR picture, the contents of the

dec_ref pic_marking() syntax structure must be identical in all slice headers of the primary coded picture and the redundant
coded picture corresponding to the primary coded picture.

Otherwise (a redundant picture corresponding to the primary coded picture is not an IDR picture), all slice headers of the
redundant picture must contain a dec ref pic_marking syntax() structure including a memory management control operation
syntax element equal to 5, and the following applies.

If the value of long_term_reference flag in the primary coded picture is equal to 0, the dec_ref pic_marking syntax structure of
the redundant coded picture must not include a memory management control operation syntax element equal to 6.

Otherwise (the value of long_term_reference flag in the primary coded picture is equal to 1), the dec ref pic _marking syntax
structure of the redundant coded picture must include memory management_control_operation syntax elements equal to 5, 4, and
6 in decoding order, and the value of max long term frame idx plusl must be equal to1l, and the value of
long term_frame idx must be equal to O.

The values of TopFieldOrderCnt and BottomFieldOrderCnt (if applicable) that result after completion of the decoding
process for any redundant coded picture or the primary coded picture of the same access unit shall be identical
regardless whether the primary coded picture or any redundant coded picture (instead of the primary coded picture) of
the access unit would be decoded.

There is no required decoding process for a coded slice or coded slice data partition of a redundant coded picture. When
the redundant pic_cnt in the slice header of a coded slice is greater than 0, the decoder may discard the coded slice.
However, a coded slice or coded slice data partition of any redundant coded picture shall obey the same constraints as a
coded slice or coded slice data partition of a primary picture.
NOTE 7 — When some of the samples in the decoded primary picture cannot be correctly decoded due to errors or losses in
transmission of the sequence and a coded redundant slice can be correctly decoded, the decoder should replace the samples of the
decoded primary picture with the corresponding samples of the decoded redundant slice. When more than one redundant slice
covers the relevant region of the primary picture, the redundant slice having the lowest value of redundant pic_cnt should be
used.

Redundant slices and slice data partitions having the same value of redundant pic_cnt belong to the same redundant
picture. Decoded slices within the same redundant picture need not cover the entire picture area and shall not overlap.

direct_spatial_mv_pred_flag specifies the method used in the decoding process to derive motion vectors and reference
indices for inter prediction as follows.

— If direct spatial mv_pred flag is equal to 1, the derivation process for luma motion vectors for B_Skip,
B Direct 16x16, and B_Direct 8x8 in subclause 8.4.1.2 shall use spatial direct mode prediction as specified in
subclause 8.4.1.2.2.

— Otherwise (direct_spatial mv_pred_flag is equal to 0), the derivation process for luma motion vectors for B_Skip,
B _Direct 16x16, and B _Direct 8x8 in subclause 8.4.1.2 shall use temporal direct mode prediction as specified in
subclause 8.4.1.2.3.

num_ref_idx_active override flag equal to0O specifies that the wvalues of the syntax elements
num_ref idx 10 active minusl and num_ref idx 11 active _minus] specified in the referred picture parameter set are
in effect. num_ref idx_active override flag equal to 1 specifies that the num ref idx 10 active minusl and
num_ref idx 11 _active minusl specified in the referred picture parameter set are overridden for the current slice (and
only for the current slice) by the following values in the slice header.

When the current slice is a P, SP, or B slice and field pic flag is equal to0 and the wvalue of
num_ref idx 10 active minusl in the picture parameter set exceeds 15, num ref idx_active override flag shall be
equal to 1.

ITU-T Rec. H.264 (11/2007) 83

When the current slice is a B slice and field pic_flag is equal to 0 and the value of num_ref idx 11 active minusl in
the picture parameter set exceeds 15, num_ref idx active override flag shall be equal to 1.

num_ref _idx_I0_active_minusl specifies the maximum reference index for reference picture list 0 that shall be used to
decode the slice.

The range of num_ref idx_10_active_minusl is specified as follows.

— If field pic flag is equal to 0, num_ref idx 10 active minusl shall be in the range of 0 to 15, inclusive. When
MbaffFrameFlag is equal to 1, num ref idx 10 active minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num ref idx 10 active minusl + 1 is the maximum index value for the decoding of
field macroblocks.

— Otherwise (field pic flag is equal to 1), num ref idx 10 active minusl shall be in the range of 0 to 31, inclusive.

num_ref idx |1 active minusl has the same semantics as num_ref idx 10 active_minus] with 10 and list 0 replaced
by 11 and list 1, respectively.

cabac init_idc specifies the index for determining the initialisation table used in the initialisation process for context
variables. The value of cabac_init_idc shall be in the range of 0 to 2, inclusive.

slice_gp_delta specifies the initial value of QPy to be used for all the macroblocks in the slice until modified by the
value of mb_qp_delta in the macroblock layer. The initial QPy quantisation parameter for the slice is computed as:

SliceQPy = 26 + pic_init_qp_minus26 + slice_qp_delta (7-28)

The value of slice_qp_delta shall be limited such that SliceQPy is in the range of -QpBdOffsety to +51, inclusive.
sp_for_switch_flag specifies the decoding process to be used to decode P macroblocks in an SP slice as follows.

— If sp_for_switch_flag is equal to 0, the P macroblocks in the SP slice shall be decoded using the SP decoding
process for non-switching pictures as specified in subclause 8.6.1.

— Otherwise (sp_for _switch_flag is equal to 1), the P macroblocks in the SP slice shall be decoded using the SP and
SI decoding process for switching pictures as specified in subclause 8.6.2.

slice_gs ddta specifies the value of QSy for all the macroblocks in SP and SI slices. The QSy quantisation parameter
for the slice is computed as:

QSy =26 + pic_init s minus26 + slice qgs_delta (7-29)

The value of slice gs_delta shall be limited such that QSy is in the range of 0 to 51, inclusive. This value of QSy is used
for the decoding of all macroblocks in SI slices with mb type equal to SI and all macroblocks in SP slices with
prediction mode equal to inter.

disable _deblocking_filter_idc specifies whether the operation of the deblocking filter shall be disabled across some
block edges of the slice and specifies for which edges the filtering is disabled. When disable deblocking filter idc is
not present in the slice header, the value of disable deblocking filter idc shall be inferred to be equal to 0.

The value of disable deblocking filter idc shall be in the range of 0 to 2, inclusive.

dice alpha cO_offset_div2 specifies the offset used in accessing the o and tcy deblocking filter tables for filtering
operations controlled by the macroblocks within the slice. From this value, the offset that shall be applied when
addressing these tables shall be computed as:

FilterOffsetA = slice alpha c0 offset div2 << (7-30)

The value of slice_alpha c0 offset div2 shall be in the range of -6 to +6, inclusive. When slice_alpha c0 offset div2
is not present in the slice header, the value of slice_alpha c0_offset div2 shall be inferred to be equal to 0.

slice _beta_offset_div2 specifies the offset used in accessing the B deblocking filter table for filtering operations
controlled by the macroblocks within the slice. From this value, the offset that is applied when addressing the 3 table of
the deblocking filter shall be computed as:

FilterOffsetB = slice_beta_offset div2 <<'1 (7-31)

84 ITU-T Rec. H.264 (03/2005)

The value of slice beta offset div2 shall be in the range of -6 to +6, inclusive. When slice beta offset div2 is not
present in the slice header the value of slice beta offset div2 shall be inferred to be equal to 0.

slice_group_change cycle is used to derive the number of slice group map units in slice group 0 when
slice_group map_type is equal to 3, 4, or 5, as specified by

MapUnitsInSliceGroup0 = Min(slice_group_change cycle * SliceGroupChangeRate, PicSizeInMapUnits) (7-32)

The value of slice_group_change cycle is represented in the bitstream by the following number of bits

Ceil(Log2(PicSizeInMapUnits + SliceGroupChangeRate + 1)) (7-33)

The value of slice_group change cycle shall be in the range of 0
to Ceil(PicSizeInMapUnits+SliceGroupChangeRate), inclusive.

74.3.1 Referencepicturelist reordering semantics

The syntax elements reordering of pic nums_idc, abs_diff pic num minusl, and long term pic num specify the
change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list_reordering_flag_l0 equal to 1 specifies that the syntax element reordering_of pic_nums_idc is present for
specifying reference picture list 0. ref pic list_reordering flag 10 equal to O specifies that this syntax element is not
present.

When ref pic_list_reordering flag 10 is equal to 1, the number of times that reordering_of pic nums_idc is not equal
to 3 following ref pic_list reordering_flag 10 shall not exceed num_ref idx 10 active minusl + 1.

When RefPicListO] num_ref idx 10 active minusl | in the initial reference picture list produced as specified in
subclause 8.2.4.2 is equal to "no reference picture", ref pic list reordering flag 10 shall be equal to1 and
reordering_of pic nums_idc shall not be equal to3 until RefPicListO] num ref idx 10 active minusl | in the
reordered list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture".

ref_pic list_reordering_flag 11 equal to 1 specifies that the syntax element reordering_of pic_nums_idc is present for
specifying reference picture list 1. ref pic list reordering_flag 11 equal to O specifies that this syntax element is not
present.

When ref pic_list reordering flag 11 is equal to 1, the number of times that reordering of pic_nums_idc is not equal
to 3 following ref pic_list reordering flag 11 shall not exceed num_ref idx 11 active minusl + 1.

When decoding a slice with slice type equal to 1 or 6 and RefPicListl[num_ref idx 11 active minus]] in the initial
reference picture list produced as specified in subclause 8.2.4.2 is equal to "no reference picture",
ref pic_list reordering_flag 11 shall be equal to 1 and reordering_of pic nums_idc shall not be equal to 3 until
RefPicList][num_ref idx 11 active minusl] in the reordered list produced as specified in subclause 8.2.4.3 is not
equal to "no reference picture".

reordering_of_pic_nums_idc together with abs_diff pic num_minusl or long_term_pic_num specifies which of the
reference pictures are re-mapped. The values of reordering_of pic_nums_idc are specified in Table 7-7. The value of
the first reordering of pic nums idc that follows immediately after ref pic_list reordering flag 10 or
ref pic_list reordering_flag 11 shall not be equal to 3.

Table 7-7 —reordering_of pic_nums idc operationsfor reordering of reference picturelists

reordering_of pic_nums_idc Reordering specified

0 abs_diff pic num_minusl is present and corresponds to a difference to
subtract from a picture number prediction value

1 abs_diff pic num_minusl is present and corresponds to a difference to
add to a picture number prediction value

2 long_term_pic_num is present and specifies the long-term picture number
for a reference picture

3 End loop for reordering of the initial reference picture list

ITU-T Rec. H.264 (11/2007) 85

abs diff_pic_num_minusl plus 1 specifies the absolute difference between the picture number of the picture being
moved to the current index in the list and the picture number prediction value. abs_diff pic num_minusl1 shall be in the
range of 0 to MaxPicNum — 1. The allowed values of abs_diff pic num_minusl are further restricted as specified in
subclause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list.
When decoding a coded frame, long term pic num shall be equal to a LongTermPicNum assigned to one of the
reference frames or complementary reference field pairs marked as "used for long-term reference". When decoding a
coded field, long_term pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as
"used for long-term reference".

7.4.3.2 Prediction weight table semantics

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of
luma log2 weight denom shall be in the range of 0 to 7, inclusive.

chroma_log2_weight_denom is the base 2 logarithm of the denominator for all chroma weighting factors. The value of
chroma log2 weight denom shall be in the range of 0 to 7, inclusive.

luma_weight_l0_flag equal to 1 specifies that weighting factors for the luma component of list 0 prediction are present.
luma_weight 10 flag equal to O specifies that these weighting factors are not present.

luma_weight_I0[1] is the weighting factor applied to the luma prediction value for list 0 prediction using
RefPicListO[i]. When luma_ weight 10 flag is equal to 1, the value of luma weight 10[i] shall be in the range of
—128 to 127, inclusive. When luma_weight 10 flag is equal to 0, luma weight 10[i] shall be inferred to be equal
to 2Muma-tog2 weight denom £, R ofPicListO i].

luma_offset_10[i] is the additive offset applied to the luma prediction value for list 0 prediction using RefPicList0[i].
The value of luma_offset 10[1] shall be in the range of —128 to 127, inclusive. When luma_ weight 10 flag is equal
to 0, luma_offset 10[i] shall be inferred as equal to 0 for RefPicList0[i].

chroma_weight_l0_flag equal to 1 specifies that weighting factors for the chroma prediction values of list 0 prediction
are present. chroma_weight 10 flag equal to 0 specifies that these weighting factors are not present.

chroma_weight_I0[i][j] is the weighting factor applied to the chroma prediction values for list 0 prediction using
RefPicListO[i] with j equal to 0 for Cb and j equal to 1 for Cr. When chroma_weight 10 flag is equal to 1, the value of
chroma_weight 10[i][j] shall be in the range of —128 to 127, inclusive. When chroma weight 10 flag is equal to 0,
chroma_weight _10[i][j] shall be inferred to be equal to 2e"oma-tog2_veight denom £y R o fPicistO] i].

chroma_offset_I0[i][j] is the additive offset applied to the chroma prediction values for list O prediction using
RefPicListO[i] with j equal to 0 for Cb and j equal to 1 for Cr. The value of chroma_offset 10[i][j] shall be in the
range of -128 to 127, inclusive. When chroma_weight 10 flag is equal to 0, chroma offset 10[i][j] shall be inferred
to be equal to 0 for RefPicListO[1].

luma_weight |1 flag, luma_weight |1, luma offset 11, chroma weight |1 flag, chroma weight |1,
chroma_offset_I1 have the same semantics as luma weight 10 flag, luma weight 10, luma_offset 10,
chroma_weight 10 flag, chroma weight 10, chroma_offset 10, respectively, with 10, list 0, and ListO replaced by 11,
list 1, and Listl, respectively.

7.4.3.3 Decoded reference picture marking semantics

The syntax elements no_output _of prior pics_flag, long term reference flag, adaptive ref pic marking mode flag,
memory _management_control operation, difference_of pic_nums minusl, long_term frame idx,
long term pic num, and max long term frame idx plusl specify marking of the reference pictures.

" n

The marking of a reference picture can be "unused for reference", "used for short-term reference”, or "used for
long-term reference", but only one among these three. When a reference picture is referred to as being marked as "used
for reference", this collectively refers to the picture being marked as "used for short-term reference" or "used for long-
term reference" (but not both). A reference picture that is marked as "used for short-term reference" is referred to as a
short-term reference picture. A reference picture that is marked as "used for long-term reference" is referred to as a
long-term reference picture.

The syntax element adaptive ref pic_marking mode flag and the content of the decoded reference picture marking
syntax structure shall be identical for all coded slices of a coded picture.

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows.

— If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded
reference picture marking syntax structure shall be inferred to be equal to 2.

86 ITU-T Rec. H.264 (03/2005)

— Otherwise (the decoded reference picture marking syntax structure is in a decoded reference picture marking
repetition SEI message as specified in Annex D), the syntax category of the decoded reference picture marking
syntax structure shall be inferred to be equal to 5.

no_output_of_prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated
after decoding of an IDR picture. See Annex C. When the IDR picture is the first IDR picture in the bitstream, the value
of no_output_of prior pics flag has no effect on the decoding process. When the IDR picture is not the first IDR
picture in the bitstream and the value of PicWidthinMbs, FrameHeightiInMbs, or max_dec frame buffering derived
from the active sequence parameter set is different from the value of PicWidthInMbs, FrameHeightInMbs, or
max_dec_frame buffering derived from the sequence parameter set active for the preceding picture,
no_output_of prior pics flag equal to 1 may be inferred by the decoder, regardless of the actual value of
no_output_of prior pics flag.

long_term_reference flag equal to 0 specifies that the MaxLongTermFrameldx variable is set equal to “no long-term
frame indices” and that the IDR picture is marked as “used for short-term reference”. long_term reference flag equal
to 1 specifies that the MaxLongTermFrameldx variable is set equal to 0 and that the current IDR picture is marked
“used for long-term reference” and is assigned LongTermFrameldx equal to 0. When num_ref frames is equal to 0,
long_term reference flag shall be equal to 0.

adaptive ref_pic_marking_mode flag selects the reference picture marking mode of the currently decoded picture as
specified in Table 7-8. adaptive ref pic marking mode flag shall be equal to 1 when the number of frames,
complementary field pairs, and non-paired fields that are currently marked as "used for long-term reference" is equal to
Max(num_ref frames, 1).

Table 7-8 — Interpretation of adaptive ref_pic marking_maode flag

adaptive ref_pic_marking_mode _flag | Reference picture marking mode specified

0 Sliding window reference picture marking mode: A marking mode
providing a first-in first-out mechanism for short-term reference
pictures.

1 Adaptive reference picture marking mode: A reference picture

marking mode providing syntax elements to specify marking of
reference pictures as “unused for reference” and to assign long-term
frame indices.

memory_management_control_operation specifies a control operation to be applied to affect the reference picture
marking. The memory management_control_operation syntax element is followed by data necessary for the operation
specified by the value of memory management control operation. The values and control operations associated with
memory_management_control operation are specified in Table 7-9. The memory management control operation
syntax elements are processed by the decoding process in the order in which they appear in the slice header, and the
semantics constraints expressed for each memory management control operation apply at the specific position in that
order at which that individual memory management_control operation is processed.

For interpretation of memory management control operation, the term reference picture is interpreted as follows.

— If the current picture is a frame, the term reference picture refers either to a reference frame or a complementary
reference field pair.

— Otherwise (the current picture is a field), the term reference picture refers either to a reference field or a field of a
reference frame.

memory management control operation shall not be equal to 1 in a slice header unless the specified reference picture
is marked as "used for short-term reference" when the memory management control operation is processed by the
decoding process.

memory management control operation shall not be equal to 2 in a slice header unless the specified long-term picture
number refers to a reference picture that is marked as "used for long-term reference" when the
memory management control operation is processed by the decoding process.

memory_management control operation shall not be equal to 3 in a slice header unless the specified reference picture
is marked as "used for short-term reference" when the memory management control operation is processed by the
decoding process.

ITU-T Rec. H.264 (11/2007) 87

memory_management_control operation shall not be equal to 3 or 6 if the value of the variable
MaxLongTermFrameldx is equal to "no long-term frame indices" when the memory management control operation is
processed by the decoding process.

Not more than one memory management control operation equal to 4 shall be present in a slice header.
Not more than one memory_management_control operation equal to 5 shall be present in a slice header.
Not more than one memory management control operation equal to 6 shall be present in a slice header.

memory_management control operation shall not be equal to 5 in a slice header wunless no
memory management_control_operation in the range of 1 to 3 is present in the same decoded reference picture marking
syntax structure.

A memory management control operation equal to 5 shall not follow a memory management control operation equal
to 6 in the same slice header.

When a memory management_control_operation equal to 6 is present, any memory management control operation
equal to 2, 3, or 4 that follows the memory management control operation equal to 6 within the same slice header
shall not specify the current picture to be marked as "unused for reference".

NOTE 1 — These constraints prohibit any combination of multiple memory management_control_operation syntax elements that
would specify the current picture to be marked as "unused for reference". However, some other combinations of
memory management control operation syntax elements are permitted that may affect the marking status of other reference
pictures more than once in the same slice header. In particular, it is permitted for a memory management control operation
equal to 3 that specifies a long-term frame index to be assigned to a particular short-term reference picture to be followed in the
same slice header by a memory management_control_operation equal to 2, 3, 4 or 6 that specifies the same reference picture to
subsequently be marked as "unused for reference".

Table 7-9 — Memory management control operation (memory_management_control_operation) values

memory_management_control_operation | Memory Management Control Operation

0 End memory management_control operation
syntax element loop

1 Mark a short-term reference picture as
“unused for reference”

2 Mark a long-term reference picture as
“unused for reference”

3 Mark a short-term reference picture as
"used for long-term reference" and assign a
long-term frame index to it

4 Specify the maximum long-term frame index
and mark all long-term reference pictures
having long-term frame indices greater than
the maximum value as "unused for reference"

5 Mark all reference pictures as
"unused for reference" and set the
MaxLongTermFrameldx variable to
"no long-term frame indices"

6 Mark the current picture as
"used for long-term reference" and assign a
long-term frame index to it

When decoding a field and a memory management control operation command equal to 3 is present that assigns a
long-term frame index to a field that is part of a short-term reference frame or part of a short-term complementary
reference field pair, another memory management control operation command to assign the same long-term frame
index to the other field of the same frame or complementary reference field pair shall be present in the same decoded
reference picture marking syntax structure.
NOTE 2 -~ The above requirement must be fulfilled even when the field referred to by the
memory_management_control operation equal to 3 is subsequently marked as "unused for reference" (for example when a
memory_management_control operation equal to 2 is present in the same slice header that causes the field to be marked as
"unused for reference").

88 ITU-T Rec. H.264 (03/2005)

When the first field (in decoding order) of a complementary reference field pair includes a long_term reference flag
equal to 1 or a memory management control operation command equal to 6, the decoded reference picture marking
syntax structure for the other field of the complementary reference field pair shall contain a
memory_management _control operation command equal to 6 that assigns the same long-term frame index to the other
field.

NOTE 3 — The above requirement must be fulfilled even when the first field of the complementary reference field pair is

subsequently marked as "unused for reference" (for example, when a memory management control operation equal to 2 is
present in the slice header of the second field that causes the first field to be marked as "unused for reference").

difference_of_pic_nums minusl is used (with memory management control operation equal to 3 or 1) to assign a
long-term frame index to a short-term reference picture or to mark a short-term reference picture as “unused for
reference”. When the associated memory management control operation is processed by the decoding process, the
resulting picture number derived from difference of pic nums minusl shall be a picture number assigned to one of the
reference pictures marked as "used for reference" and not previously assigned to a long-term frame index.

The resulting picture number is constrained as follows.

— If field pic flag is equal to 0, the resulting picture number shall be one of the set of picture numbers assigned to
reference frames or complementary reference field pairs.
NOTE 4 — When field pic flag is equal to 0, the resulting picture number must be a picture number assigned to a
complementary reference field pair in which both fields are marked as "used for reference" or a frame in which both
fields are marked as "used for reference". In particular, when field pic_flag is equal to 0, the marking of a non-paired
field or a frame in which a single field is marked as "used for reference" cannot be affected by a
memory_management_control operation equal to 1.

— Otherwise (field pic_flag is equal to 1), the resulting picture number shall be one of the set of picture numbers
assigned to reference fields.

long_term_pic_num is used (with memory management_control_operation equal to 2) to mark a long-term reference
picture as "unused for reference". When the associated memory management control operation is processed by the
decoding process, long_term pic_num shall be equal to a long-term picture number assigned to one of the reference
pictures that is currently marked as "used for long-term reference".

The resulting long-term picture number is constrained as follows.

— If field pic_flag is equal to 0, the resulting long-term picture number shall be one of the set of long-term picture
numbers assigned to reference frames or complementary reference field pairs.
NOTE 5 — When field pic_flag is equal to 0, the resulting long-term picture number must be a long-term picture
number assigned to a complementary reference field pair in which both fields are marked as "used for reference"” or a
frame in which both fields are marked as "used for reference". In particular, when field pic flag is equal to 0, the
marking of a non-paired field or a frame in which a single field is marked as "used for reference" cannot be affected
by a memory management_control operation equal to 2.

— Otherwise (field pic_flag is equal to 1), the resulting long-term picture number shall be one of the set of long-term
picture numbers assigned to reference fields.

long_term_frame_idx is used (with memory management_control operation equal to 3 or 6) to assign a long-term
frame index to a picture. When the associated memory management control operation is processed by the decoding
process, the value of long_term_frame idx shall be in the range of 0 to MaxLongTermFrameldx, inclusive.

max_long_term_frame_idx_plusl minus 1 specifies the maximum value of long-term frame index allowed for
long-term reference pictures (until receipt of another value of max long term frame idx plusl). The value of
max_long term_ frame idx plusl shall be in the range of 0 to num_ref frames, inclusive.

7.4.4 Slicedata semantics
cabac_alignment_one bit is a bit equal to 1.

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding a P or SP slice,
mb_type shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type, or
for which, when decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively
referred to as a B macroblock type. The value of mb_skip run shall be in the range of 0 to PicSizeInMbs —
CurrMbAddr, inclusive.

mb_skip_flag equal to 1 specifies that for the current macroblock, when decoding a P or SP slice, mb_type shall be
inferred to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when
decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B
macroblock type. mb_skip flag equal to 0 specifies that the current macroblock is not skipped.

ITU-T Rec. H.264 (11/2007) 89

mb_field_decoding flag equal to 0 specifies that the current macroblock pair is a frame macroblock pair.
mb_field decoding flag equal to 1 specifies that the macroblock pair is a field macroblock pair. Both macroblocks of a
frame macroblock pair are referred to in the text as frame macroblocks, whereas both macroblocks of a field
macroblock pair are referred to in the text as field macroblocks.

When mb_field decoding flag is not present for either macroblock of a macroblock pair, the value of
mb_field decoding_flag is derived as follows.

— If there is a neighbouring macroblock pair immediately to the left of the current macroblock pair in the same slice,
the value of mb_field decoding flag shall be inferred to be equal to the value of mb_field decoding_flag for the
neighbouring macroblock pair immediately to the left of the current macroblock pair,

— Otherwise, if there is no neighbouring macroblock pair immediately to the left of the current macroblock pair in
the same slice and there is a neighbouring macroblock pair immediately above the current macroblock pair in the
same slice, the value of mb field decoding flag shall be inferred to be equal to the wvalue of
mb_field decoding_flag for the neighbouring macroblock pair immediately above the current macroblock pair,

— Otherwise (there is no neighbouring macroblock pair either immediately to the left or immediately above the
current macroblock pair in the same slice), the value of mb_field decoding_flag shall be inferred to be equal to 0.

end_of_dlice flag equal to 0 specifies that another macroblock is following in the slice. end of slice flag equal to 1
specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress() used in the slice data syntax table is specified in subclause 8.2.2.

745 Macroblock layer semantics
mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

Tables and semantics are specified for the various macroblock types for I, SI, P, SP, and B slices. Each table presents
the value of mb type, the name of mb type, the number of macroblock partitions used (given by the
NumMBbPart(mb_type) function), the prediction mode of the macroblock (when it is not partitioned) or the first
partition (given by the MbPartPredMode(mb_type, 0) function) and the prediction mode of the second partition (given
by the MbPartPredMode(mb_type, 1) function). When a value is not applicable it is designated by “na”. In the text, the
value of mb_type may be referred to as the macroblock type and a value X of MbPartPredMode() may be referred to in
the text by "X macroblock (partition) prediction mode" or as “X prediction macroblocks”.

Table 7-10 shows the allowed collective macroblock types for each slice_type.
NOTE 1 — There are some macroblock types with Pred L0 prediction mode that are classified as B macroblock types.

Table 7-10 — Allowed collective macroblock typesfor dlice type

dlice_type Allowed collective macroblock types

I (slice) I (see Table 7-11) (macroblock types)

P (slice) P (see Table 7-13) and I (see Table 7-11) (macroblock types)
B (slice) B (see Table 7-14) and I (see Table 7-11) (macroblock types)
SI (slice) SI (see Table 7-12) and I (see Table 7-11) (macroblock types)
SP (slice) P (see Table 7-13) and I (see Table 7-11) (macroblock types)

transform_size 8x8 flag equal to 1 specifies that for the current macroblock the transform coefficient decoding
process and picture construction process prior to deblocking filter process for residual 8x8 blocks shall be invoked for
luma samples, and when ChromaArrayType == 3 also for Cb and Cr samples. transform_size 8x8 flag equal to 0
specifies that for the current macroblock the transform coefficient decoding process and picture construction process
prior to deblocking filter process for residual 4x4 blocks shall be invoked for luma samples, and when
ChromaArrayType == 3 also for Cb and Cr samples. When transform_size 8x8 flag is not present in the bitstream, it
shall be inferred to be equal to 0.

NOTE 2 — When the current macroblock prediction mode MbPartPredMode(mb type, 0) is equal to Intra 16x16,
transform_size 8x8 flag is not present in the bitstream and then inferred to be equal to 0.

When sub_mb_type[mbPartldx] (see subclause 7.4.5.2) is present in the bitstream for all 8x8 blocks indexed by
mbPartldx = 0..3, the variable noSubMbPartSizeLessThan8x8Flag indicates whether for each of the four 8x8 blocks the
corresponding SubMbPartWidth(sub_mb_type[mbPartldx]) and SubMbPartHeight(sub_mb_type[mbPartldx]) are
both equal to 8.

90 ITU-T Rec. H.264 (03/2005)

NOTE 3 — When noSubMbPartSizeLessThan8x8Flag is equal to 0 and the current macroblock type is not equal to I NxN,
transform_size 8x8 flag is not present in the bitstream and then inferred to be equal to 0.

Macroblock types that may be collectively referred to as I macroblock types are specified in Table 7-11.

The macroblock types for I slices are all I macroblock types.

Table 7-11 —Macroblock typesfor | slices

g g g~ g L
o 5 5 T 3 < 3 B B
E @ B &S 32 Ex 8g 8z

5 8 $E =& OF OF

z = =
0 I NxN 0 Intra_4x4 na Equation 7-34 | Equation 7-34
0 I NxN 1 Intra 8x8 na Equation 7-34 | Equation 7-34
1 I 16x16 0 0 0 na Intra_16x16 0 0 0
2 [16x16 1 0 0 na Intra_16x16 1 0 0
3 I 16x16_.2 0 0 na Intra_16x16 2 0 0
4 I 16x16 3 0 0 na Intra_16x16 3 0 0
5 [16x16 0. 1 0 na Intra_16x16 0 1 0
6 I 16x16_1_10 na Intra_16x16 1 1 0
7 I 16x16 2 1 0 na Intra_16x16 2 1 0
8 [16x16 3 1 0 na Intra_16x16 3 1 0
9 I 16x16 0.2 0 na Intra_16x16 0 2 0
10 [16x16 1 2 0 na Intra_16x16 1 2 0
11 I 16x16 2 2 0 na Intra_16x16 2 2 0
12 I 16x16 3 2 0 na Intra_16x16 3 2 0
13 I 16x16 0 0 1 na Intra_16x16 0 0 15
14 I 16x16_1 01 na Intra_16x16 1 0 15
15 I 16x16 2 0 1 na Intra_16x16 2 0 15
16 I 16x16 3 0 1 na Intra_16x16 3 0 15
17 I 16x16 0 1 1 na Intra_16x16 0 1 15
18 I 16x16 1 1 1 na Intra_16x16 1 1 15
19 I 16x16 2 1 1 na Intra_16x16 2 1 15
20 I 16x16 3 1 1 na Intra_16x16 3 1 15
21 I 16x16 0 2 1 na Intra_16x16 0 2 15
22 I 16x16_1 2 1 na Intra_16x16 1 2 15
23 I 16x16 2 2 1 na Intra_16x16 2 2 15
24 I 16x16 3 2 1 na Intra_16x16 3 2 15
25 I PCM na na na na na

ITU-T Rec. H.264 (11/2007) 91

The following semantics are assigned to the macroblock types in Table 7-11.

I NxN: A mnemonic name for mb type equal to 0 with MbPartPredMode(mb type, 0) equal to Intra 4x4 or
Intra_8x8.

I 16x16 0 0 0,1 16x16 1 0 0,1 16x16 2 0 0,1 16x16 3 0 0,1 16x16 0 1 0,1 16x16 1 1 0,1 16x16 2 1 0,
1 16x16 3 1 0,1 16x16 0 2 0,1 16x16_1 2 0,1 16x16 2 2 0,1 16x16 3 2 0,1 16x16 0 0 1,1 16x16 1 0 1,
1 16x16 2 0 1,1 16x16 3 0 1,1 16x16 0 1 1,1 16x16_1 1 1,1 16x16 2 1 1,1 16x16 3 1 1,1 16x16 0 2 1,
I 16x16 1 2 1,1 16x16 2 2 1,1 16x16 3 2 1:the macroblock is coded as an Intra 16x16 predlctlon mode
macroblock.

To each Intra_16x16 prediction macroblock, an Intral6x16PredMode is assigned, which specifies the Intra 16x16
prediction mode, and values of CodedBlockPatternL.uma and CodedBlockPatternChroma are assigned as specified in

Table 7-11.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra_4x4 prediction process is invoked as
specified in subclause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_8x8 specifies the macroblock prediction mode and specifies that the Intra 8x8 prediction process is invoked as
specified in subclause 8.3.2. Intra_8x8 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra 16x16 prediction process is invoked
as specified in subclause 8.3.3. Intra_16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to I PCM, the Intra macroblock prediction mode shall be inferred.

A macroblock type that may be referred to as SI macroblock type is specified in Table 7-12.

The macroblock types for SI slices are specified in Table 7-12 and 7-11. The mb_type value 0 is specified in Table 7-12
and the mb_type values 1 to 26 are specified in Table 7-11, indexed by subtracting 1 from the value of mb_type.

Table 7-12 —Macraoblock type with value O for Sl dices

©
«
g | ¢ :
o) S <
| &5 | = Q E
[} | =< '8 o 0]
o a QY et [=
2 IS c < o = $
o © = | S kv e
IS Q E Q © Q o
£ a € = S o
3 S— © o 3
= = € B e
O
0 SI Intra_4x4 na Equation 7-34 | Equation 7-34

The following semantics are assigned to the macroblock type in Table 7-12. The SI macroblock is coded as Intra 4x4
prediction macroblock.

Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-13.

The macroblock types for P and SP slices are specified in Table 7-13 and 7-11. mb_type values 0 to 4 are specified in
Table 7-13 and mb_type values 5 to 30 are specified in Table 7-11, indexed by subtracting 5 from the value of mb_type.

92 ITU-T Rec. H.264 (03/2005)

Table 7-13 —Macroblock type values0to 4 for P and SP slices

) [¢5] Q
S = 85 85 |s-|¢
o i 3w =° = So =
o o Qoo gY g9 2 TS
2 S 22 - & - & z2 | T2
[= =" 2 2 = I =y
Qa (o] €0 =7 = $a T o
IS <} 5 € g2 g2 L E Qe
- a £ a £ - | 22
g z o — o — = >
z = =
0 P LO 16x16 1 Pred LO na 16 16
1 P LO LO 16x8 2 Pred_LO Pred LO 16 8
2 P LO LO 8x16 2 Pred LO Pred LO 8 16
3 P 8x8 4 na na 8 8
4 P_8x8ref0 4 na na 8 8
inferred P_Skip 1 Pred LO na 16 16

The following semantics are assigned to the macroblock types in Table 7-13.

P_LO_16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma
samples and associated chroma samples.

P L0 LO MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using
two luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated

chroma samples, respectively.

P 8x8: for each sub-macroblock an additional syntax element (sub_mb type) is present in the bitstream that
specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2).

P _8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index (ref idx 10) is present
in the bitstream and ref idx 10[mbPartldx] shall be inferred to be equal to O for all sub-macroblocks of the

macroblock (with indices mbPartldx equal to 0..3).

— P_Skip: no further data is present for the macroblock in the bitstream.
The following semantics are assigned to the macroblock prediction modes (MbPartPredMode()) in Table 7-13.

Pred LO: specifies that the inter prediction process is invoked using list O prediction. Pred 1O is an Inter
macroblock prediction mode.

Macroblock types that may be collectively referred to as B macroblock types are specified in Table 7-14.

The macroblock types for B slices are specified in Table 7-14 and 7-11. The mb_type values 0 to 22 are specified in
Table 7-14 and the mb_type values 23 to 48 are specified in Table 7-11, indexed by subtracting 23 from the value of

mb_type.

ITU-T Rec. H.264 (11/2007) 93

Table 7-14 —Macrablock type values0to 22 for B dlices

() Q [}
2 - B~ B~ < =
® 7 i) =° = So | 2o
Q e} Qo gy gy 2 T o
= £ S = o o 23| =
| = = [algrn el o] | |
Q e} £ = = $a 8 o
S © S E 3 g 82 L E o e
> o aE - -
% S— o— = =
z = =
0 B Direct _16x16 na Direct na 8 8
1 B LO 16x16 1 Pred LO na 16 16
2 B L1 16x16 1 Pred L1 na 16 16
3 B_Bi_l6x16 1 BiPred na 16 16
4 B _LO _LO_16x8 2 Pred_LO Pred LO 16 8
5 B L0 LO 8x16 2 Pred LO Pred LO 8 16
6 B L1_L1 _16x8 2 Pred L1 Pred L1 16 8
7 B L1 L1 8x16 2 Pred L1 Pred L1 8 16
8 B LO L1 16x8 2 Pred LO Pred L1 16 8
9 B LO_L1 8x16 2 Pred_LO Pred L1 8 16
10 B L1 _LO_16x8 2 Pred L1 Pred_LO 16 8
11 B L1 L0 8x16 2 Pred L1 Pred LO 8 16
12 B _LO_Bi_16x8 2 Pred_LO BiPred 16 8
13 B _LO Bi_8x16 2 Pred_LO BiPred 8 16
14 B L1 Bi 16x8 2 Pred L1 BiPred 16 8
15 B _L1_Bi_8x16 2 Pred L1 BiPred 8 16
16 B Bi LO_16x8 2 BiPred Pred LO 16 8
17 B Bi LO 8x16 2 BiPred Pred LO 8 16
18 B Bi_L1_16x8 2 BiPred Pred L1 16 8
19 B Bi L1 _8x16 2 BiPred Pred L1 8 16
20 B Bi Bi 16x8 2 BiPred BiPred 16 8
21 B_Bi_Bi_8x16 2 BiPred BiPred 8 16
22 B 8x8 4 na na 8 8
inferred B _Skip na Direct na 8 8

The following semantics are assigned to the macroblock types in Table 7-14:

— B _Direct_16x16: no motion vector differences or reference indices are present for the macroblock in the bitstream.
The functions MbPartWidth(B_Direct 16x16), and MbPartHeight(B_Direct 16x16) are used in the derivation
process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

94 ITU-T Rec. H.264 (03/2005)

— B_X 16x16 with X being replaced by L0, L1, or Bi: the samples of the macroblock are predicted with one luma
macroblock partition of size 16x16 luma samples and associated chroma samples. For a macroblock with type
B X 16x16 with X being replaced by either LO or L1, one motion vector difference and one reference index is
present in the bitstream for the macroblock. For a macroblock with type B X 16x16 with X being replaced by Bi,
two motion vector differences and two reference indices are present in the bitstream for the macroblock.

— B X0 X1 MxN, with X0, X1 referring to the first and second macroblock partition and being replaced by L0, L1,
or Bi, and MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two luma
partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma
samples, respectively. For a macroblock partition X0 or X1 with X0 or X1 being replaced by either LO or L1, one
motion vector difference and one reference index is present in the bitstream. For a macroblock partition X0 or X1
with X0 or X1 being replaced by Bi, two motion vector differences and two reference indices are present in the
bitstream for the macroblock partition.

— B 8x8: for each sub-macroblock an additional syntax element (sub _mb type) is present in the bitstream that
specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2).

— B_Skip: no further data is present for the macroblock in the bitstream. The functions MbPartWidth(B_Skip), and
MbPartHeight(B_Skip) are used in the derivation process for motion vectors and reference frame indices in
subclause 8.4.1 for direct mode prediction.

The following semantics are assigned to the macroblock prediction modes (MbPartPredMode()) in Table 7-14.

— Direct: no motion vector differences or reference indices are present for the macroblock (in case of B_Skip or
B_Direct_16x16) in the bitstream. Direct is an Inter macroblock prediction mode.

— Pred _LO: see semantics for Table 7-13.

— Pred L1: specifies that the Inter prediction process is invoked using list 1 prediction. Pred L1 is an Inter
macroblock prediction mode.

— BiPred: specifies that the Inter prediction process is invoked using list 0 and list 1 prediction. BiPred is an Inter
macroblock prediction mode.

pcm_alignment_zero_bit is a bit equal to 0.

pcm_sample luma[i] is a sample value. The first pcm_sample luma] i] values represent luma sample values in the
raster scan within the macroblock. The number of bits used to represent each of these samples is BitDepthy. When
profile_idc is not equal to 44, 100, 110, 122, or 244, pcm_sample luma] i | shall not be equal to 0.

pcm_sample chroma[i] is a sample value. The first MbWidthC * MbHeightC pcm_sample chroma[i] values
represent Cb sample values in the raster scan within the macroblock and the remaining MbWidthC * MbHeightC
pem_sample _chroma[i | values represent Cr sample values in the raster scan within the macroblock. The number of
bits used to represent each of these samples is BitDepthc. When profile idc is not equal to 44, 100, 110, 122, or 244,
pem_sample chroma] i] shall not be equal to 0.

coded_block_pattern specifies which of the four 8x8 luma blocks and associated chroma blocks of a macroblock may
contain non-zero transform coefficient levels. When coded block pattern is present in the bitstream, the variables
CodedBlockPatternLuma and CodedBlockPatternChroma are derived as follows.

CodedBlockPatternLuma = coded block pattern % 16
CodedBlockPatternChroma = coded block pattern/ 16 (7-34)

When the macroblock type is not equal to I PCM, the following applies.

— If the macroblock prediction mode is equal Intra_16x16, the following applies.

— If ChromaArrayType is not equal to 3, the value of CodedBlockPatternLuma distinguishes between the
following cases.

— If CodedBlockPatternLuma is equal to 0, all AC transform coefficient levels of the luma component of
the macroblock are equal to 0 for all 16 of the 4x4 blocks in the 16x16 luma block.

— Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least
one of the AC transform coefficient levels of the luma component of the macroblock shall be non-zero,
and the AC transform coefficient levels are scanned for all 16 of the 4x4 blocks in the 16x16 block.

ITU-T Rec. H.264 (11/2007) 95

— Otherwise (ChromaArrayType is equal to 3), the value of CodedBlockPatternLuma distinguishes between the
following cases.

If CodedBlockPatternLuma is equal to 0, all AC transform coefficient levels of the luma, Cb, and Cr
components of the macroblock are equal to O for all 16 of the 4x4 blocks in the luma, Cb, and Cr
components of the macroblock.

Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least
one of the AC transform coefficient levels of the luma, Cb, or Cr components of the macroblock shall be
non-zero, and the AC transform coefficient levels are scanned for all 16 of the 4x4 blocks in the luma
Cb, and Cr components of the macroblock.

— Otherwise (the macroblock prediction mode is not equal to Intra 16x16), coded block pattern is present in the
bitstream, and the following applies.

— If ChromaArrayType is not equal to 3, each of the four LSBs of CodedBlockPatternLuma distinguishes, for
one of the four 8x8 luma blocks of the macroblock, between the following cases.

If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the
luma transform blocks in the 8x8 luma block are equal to zero.

Otherwise (the corresponding bit of CodedBlockPatternLuma is equal to 1), one or more transform
coefficient levels of one or more of the luma transform blocks in the 8x8 luma block shall be non-zero
valued and the transform coefficient levels of the corresponding transform blocks are scanned.

— Otherwise (ChromaArrayType is equal to 3), each of the four LSBs of CodedBlockPatternLuma
distinguishes, for one of the four 8x8 luma blocks of the macroblock, between the following cases.

If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the
luma, Cb, and Cr transform blocks in the 8x8 luma block are equal to zero.

Otherwise (the corresponding bit of CodedBlockPatternLuma is equal to 1), one or more transform
coefficient levels of one or more of the luma, Cb, or Cr transform blocks in the 8x8 luma block shall be
non-zero valued and the transform coefficient levels of the corresponding transform blocks are scanned.

When the macroblock type is not equal to I PCM, CodedBlockPatternChroma is interpreted as follows.

— If ChromaArrayType is not equal to 0 or 3, CodedBlockPatternChroma is specified in Table 7-15.

— Otherwise (ChromaArrayType is equal to 0 or 3), the bitstream shall not contain data that results in a derived value
of CodedBlockPatternChroma that is not equal to 0.

Table 7-15 — Specification of CodedBlockPatter nChroma values

CodedBlockPatternChroma | Description

0 All chroma transform coefficient levels are equal to 0.

1 One or more chroma DC transform coefficient levels shall be non-zero valued.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels shall be non-zero valued.

mb_qp_delta can change the value of QPy in the macroblock layer. The decoded value of mb_qp_delta shall be in the
range of —(26 + QpBdOffsety / 2) to +(25 + QpBdOffsety / 2), inclusive. mb_qp_delta shall be inferred to be equal
to 0 when it is not present for any macroblock (including P_Skip and B_Skip macroblock types).

The value of QPy is derived as

QPy = ((QPyprey + mb_gp_delta + 52 +2 * QpBdOffsety) % (52 + QpBdOffsety)) - QpBdOffsety (7-35)

where QPy prgy is the luma quantisation parameter, QPy, of the previous macroblock in decoding order in the current
slice. For the first macroblock in the slice QPy prgy is initially set equal to SliceQPy derived in Equation 7-28 at the start

of each slice.

The value of QP'y is derived as

QP'y = QPy + QpBdOffsety (7-36)

96 ITU-T Rec. H.264 (03/2005)

7451 Macroblock prediction semantics
All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intradx4 pred_mode flag[luma4x4BlkIdx] and rem_intradx4 pred_mode] luma4x4BIkIdx | specify the
Intra_4x4 prediction of the 4x4 luma block with index luma4x4Blkldx = 0..15. When ChromaArrayType is equal to 3,
prev_intrad4x4 pred mode flag[luma4x4Blkldx] and rem_intra4x4 pred mode[luma4x4Blkldx] also specify the
Intra_4x4 prediction of the 4x4 Cb block with luma4x4BlklIdx equal to cb4x4Blkldx for cb4x4Blkldx = 0..15 and the
Intra_4x4 prediction of the 4x4 Cr block with luma4x4BlkIdx equal to cr4x4BlkIdx for cr4x4BlklIdx = 0..15.

prev_intra8x8 pred_mode flag[luma8x8BlkIdx] and rem_intra8x8 pred_mode] luma8x8BlkIdx | specify the
Intra_8x8 prediction of the 8x8 luma block with index luma8x8BlkIdx = (..3. When ChromaArrayType is equal to 3,
prev_intra8x8 pred mode flag[luma8x8Blkldx] and rem_intra8x8 pred mode[luma8x8BlkIdx] also specify the
Intra 8x8 prediction of the 8x8 Cb block with luma8x8Blkldx equal to cb8x8BlkIdx for cb8x8Blkldx = 0..3 and the
Intra_8x8 prediction of the 8x8 Cr block with index luma8x8Blkldx equal to cr8x8Blkldx for cr8x8Blkldx = 0..3.

intra_chroma_pred_mode specifies the type of spatial prediction used for chroma in macroblocks using Intra_4x4 or
Intra_16x16 prediction, as shown in Table 7-16. The value of intra_chroma_pred mode shall be in the range of 0 to 3,
inclusive.

Table 7-16 — Relationship between intra_chroma_pred_mode and spatial prediction modes

intra_chroma_pred_mode Intra Chroma Prediction Mode
0 DC
1 Horizontal
2 Vertical
3 Plane

ref_idx_IO[mbPartldx] when present, specifies the index in reference picture list 0 of the reference picture to be used
for prediction.

The range of ref idx 10[mbPartldx], the index in list O of the reference picture, and, if applicable, the parity of the
field within the reference picture used for prediction are specified as follows.

— If MbaffFrameFlag is equal to 0 or mb_field decoding_flag is equal to 0, the value of ref idx 10[mbPartldx] shall
be in the range of 0 to num_ref idx 10 active minusl, inclusive.

— Otherwise (MbaffFrameFlag is equal tol and mb field decoding flag is equal tol), the value of
ref idx_10[mbPartldx] shall be in the range of 0 to 2 * num_ref idx 10 active minusl + 1, inclusive.

When only one reference picture is used for inter prediction, the values of ref idx 10[mbPartldx] shall be inferred to
be equal to 0.

ref_idx_I1] mbPartldx] has the same semantics as ref_idx_10, with 10 and list O replaced by 11 and list 1, respectively.

mvd_[O[mbPartIdx][0][compldx] specifies the difference between a vector component to be used and its prediction.
The index mbPartldx specifies to which macroblock partition mvd 10 is assigned. The partitioning of the macroblock is
specified by mb_type. The horizontal motion vector component difference is decoded first in decoding order and is
assigned Compldx = 0. The vertical motion vector component is decoded second in decoding order and is assigned
Compldx = 1. The range of the components of mvd 10[mbPartldx][0][compldx] is specified by constraints on the
motion vector variable values derived from it as specified in Annex A.

mvd_[1] mbPartldx][0][compldx] has the same semantics as mvd 10, with 10 and LO replaced by 11 and LI,
respectively.

7.4.5.2 Sub-macroblock prediction semantics
sub_mb_type[mbPartldx] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P, and B macroblock types. Each table
presents the value of sub_mb_type, the name of sub_mb_type, the number of sub-macroblock partitions used (given by
the NumSubMbPart(sub_mb_type) function), and the prediction mode of the sub-macroblock (given by the
SubMbPredMode(sub_mb_type) function). In the text, the value of sub_mb type may be referred to by

ITU-T Rec. H.264 (11/2007) 97

“sub-macroblock type”. In the text, the value of SubMbPredMode() may be referred to by “sub-macroblock prediction
mode”.

The interpretation of sub_mb_type[mbPartldx] for P macroblock types is specified in Table 7-17, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartldx] is not present.

Table 7-17 — Sub-macroblock typesin P macroblocks

x x x x x X
S S S S S S
= = = = cs =
3 IS 5 83 = S @
a1 a1 Fa a8 =y T 0O
el 52 S o =g =c T o
IS o E S E BE = IS = E
el Eq S £ S S
o Q A oo oo 52
2 z2 2 s2 s2 2

[| ET 27 =7 =4
Q o S o ! a S o
E E ZE @ E @ E 3 E,
a o Qo Qo Q o
3 3 3 3 3)
inferred na na na na na

0 P_LO 8x8 1 Pred_LO 8 8

1 P L0 8x4 2 Pred L0 8 4

2 P LO 4x8 2 Pred LO 4 8

3 P_LO 4x4 4 Pred_LO 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-17.

— P_LO_MxN, with MxN being replaced by 8x8, 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted
using one luma partition of size MxN equal to 8x8, two luma partitions of size MxN equal to 8x4, or two luma
partitions of size MxN equal to 4x8, or four luma partitions of size MxN equal to 4x4, and associated chroma
samples, respectively.

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7-17.

— Pred LO: see semantics for Table 7-13.

The interpretation of sub_mb_type[mbPartldx] for B macroblock types is specified in Table 7-18, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartldx] is not present, and the inferred value "mb_type"
specifies that the name of sub_mb_type[mbPartldx] is the same as the name of mb_type for this case.

98 ITU-T Rec. H.264 (03/2005)

Table 7-18 — Sub-macroblock typesin B macroblocks

X X X = x x
))))))
= = =] =] o5 25
3 3 g5 3 8B 58 S
o o e o =0 T O
S 59 rolte] =g =c T o
g o E s E BE = g = E
T Ex = LT gz | 8w
Q Q oo oo oo S 2
2 z2 2 s2 s2 2
[[E 27 =7 =7
o o Sa o) o 29
E E =) @ E @ E BE,
o o ! o)))
3 3 3 3 3 3
inferred mb_type 4 Direct 4 4
0 B_Direct_8x8 4 Direct 4 4
1 B_LO 8x8 1 Pred L0 8 8
2 B L1 8x8 1 Pred_L1 8 8
3 B Bi_8x8 1 BiPred 8 8
4 B_LO 8x4 2 Pred L0 8 4
5 B L0 _4x8 2 Pred_LO 4 8
6 B L1 8x4 2 Pred L1 8 4
7 B L1 4x8 2 Pred L1 4 8
8 B_Bi_8x4 2 BiPred 8 4
9 B Bi_4x8 2 BiPred 4 8
10 B_LO 4x4 4 Pred L0 4 4
11 B L1 4x4 4 Pred_L1 4 4
12 B Bi_4x4 4 BiPred 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-18:

B_Skip and B_Direct 16x16: no motion vector differences or reference indices are present for the sub-macroblock
in the bitstream. The functions SubMbPartWidth() and SubMbPartHeight() are used in the derivation process for
motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

B_Direct 8x8: no motion vector differences or reference indices are present for the sub-macroblock in the
bitstream. The functions SubMbPartWidth(B_Direct 8x8) and SubMbPartHeight(B Direct 8x8) are used in the
derivation process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

B_X MxN, with X being replaced by L0, L1, or Bi, and MxN being replaced by 8x8, 8x4, 4x8 or 4x4: the samples
of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, or the samples of the
sub-macroblock are predicted using two luma partitions of size MxN equal to 8x4, or the samples of the
sub-macroblock are predicted using two luma partitions of size MxN equal to 4x8, or the samples of the
sub-macroblock are predicted using four luma partitions of size MxN equal to 4x4, and associated chroma
samples, respectively. All sub-macroblock partitions share the same reference index. For an MxN sub-macroblock
partition in a sub-macroblock with sub_mb_type being B. X MxN with X being replaced by either LO or L1, one
motion vector difference is present in the bitstream. For an MxN sub-macroblock partition in a sub-macroblock
with sub_mb_type being B_Bi_MxN, two motion vector difference are present in the bitstream.

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7-18.

Direct: see semantics for Table 7-14.

Pred_LO: see semantics for Table 7-13.

ITU-T Rec. H.264 (11/2007) 99

— Pred_LI: see semantics for Table 7-14.

— BiPred: see semantics for Table 7-14.

ref_idx_|0[mbPartIdx] has the same semantics as ref idx_10 in subclause 7.4.5.1.
ref_idx_|1[mbPartIdx] has the same semantics as ref_idx_11 in subclause 7.4.5.1.

mvd_[O[mbPartIdx][subMbPartldx][compldx] has the same semantics as mvd_10 in subclause 7.4.5.1, except that it
is applied to the sub-macroblock partition index with subMbPartldx. The indices mbPartldx and subMbPartldx specify
to which macroblock partition and sub-macroblock partition mvd_10 is assigned.

mvd_I1[mbPartIdx][subMbPartldx][compldx] has the same semantics as mvd_11 in subclause 7.4.5.1.

7.45.3 Residual data semantics
The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as follows.

— If entropy_coding mode_flag is equal to 0, residual block is set equal to residual block cavlc, which is used for
parsing the syntax elements for transform coefficient levels.

— Otherwise (entropy_coding_mode_flag is equal to 1), residual block is set equal to residual block cabac, which is
used for parsing the syntax elements for transform coefficient levels.

The syntax structure residual luma(i16x16DClevel, i16x16AClevel, level, level8x8) is used with the variables in
brackets being its output and being assigned as follows.

Intral6x16DCLevel is set equal to i16x16DClevel, Intral6x16ACLevel is set equal to i16x16AClevel, Lumalevel is set
equal to level, and LumalLevel8x8 is set equal to level8x8.

When ChromaArrayType is equal to 1 or 2, the following applies.

— For each chroma component, indexed by iCbCr = 0..1, the DC transform coefficient levels of the 4 * NumC8x8§
4x4 chroma blocks are parsed into the iCbCr-th list ChromaDCLevel[iCbCr].

— For each of the 4x4 chroma blocks, indexed by i4x4 =0.3 and i8x8 = 0..NumC8x8 — 1, of each chroma
component, indexed by iCbCr = 0..1, the 15 AC transform coefficient levels are parsed into the (i8x8*4 + i4x4)-th
list of the iCbCr-th chroma component ChromaACLevel[iCbCr][i8x8%4 + i4x4].

When ChromaArrayType is equal to 3, the following applies.

— The syntax structure residual luma(i16x16DClevel, i16x16AClevel, level, level8x8) is used for the Cb
component with the variables in brackets being its output and being assigned as follows. CbIntral6x16DCLevel is
set equal to i116x16DClevel, Cblntral6x16ACLevel is set equal to i16x16AClevel, CbLevel is set equal to level,
and CbLevel8x8 is set equal to level8x8.

— The syntax structure residual luma(i16x16DClevel, i16x16AClevel, level, level8x8) is used for the Cr component
with the variables in brackets being its output and being assigned as follows. Crintral 6x16DCLevel is set equal to
i16x16DClevel, Crintral6x16ACLevel is set equal to i16x16AClevel, CrLevel is set equal to level, and
CrLevel8x8 is set equal to level8x8.

7.45.3.1 Residual luma data semantics
Output of this syntax structure are the variables i16x16DClevel, i16x16AClevel, level, and level8x8.
The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as follows.

— If entropy_coding_mode flag is equal to 0, residual block is set equal to residual block cavle, which is used for
parsing the syntax elements for transform coefficient levels.

— Otherwise (entropy coding_mode_flag is equal to 1), residual block is set equal to residual block cabac, which is
used for parsing the syntax elements for transform coefficient levels.

Depending on mb_type, the syntax structure residual block(coeffLevel, maxNumCoeff) is used with the arguments
coeffLevel, which is a list containing the maxNumCoeff transform coefficient levels that are parsed in residual_block()
and maxNumCoeff as follows.

Depending on MbPartPredMode(mb_type, 0), the following applies.

— If MbPartPredMode(mb_type, 0) is equal to Intra 16x16, the transform coefficient levels are parsed into the list
116x16DClevel and into the 16 lists i16x16AClevel[i]. i16x16DClevel contains the 16 transform coefficient levels

100 ITU-T Rec. H.264 (03/2005)

of the DC transform coefficient levels for each 4x4 luma block. For each of the 16 4x4 luma blocks indexed by
1=0..15, the 15 AC transform coefficients levels of the i-th block are parsed into the i-th list i16x16AClevel[i].

— Otherwise (MbPartPredMode(mb_type, 0) is not equal to Intra_16x16), the following applies.

— If transform_size 8x8 flag is equal to 0, for each of the 16 4x4 luma blocks indexed by i=0..15, the 16
transform coefficient levels of the i-th block are parsed into the i-th list level[i].

— Otherwise (transform_size 8x8 flag is equal to 1), for each of the 4 8x8 luma blocks indexed by i8x8 =0..3,
the following applies.

— If entropy coding mode flag is equal to 0, first for each of the 4 4x4 luma blocks indexed by
i4x4=0.3, the 16 transform coefficient levels of the i4x4-th block are parsed into the
(18x8 * 4 + i4x4)-th list level[i8x8 * 4 + i4x4]. Then, the 64 transform coefficient levels of the 18x8-th
8x8 luma block which are indexed by 4 * i+ i4x4, where i=0..15 and i4x4 =0..3, are derived as
level8x8[i8x8][4 * i +14x4 | =level[i8x8 *4 +i4x4][1].

NOTE — The 4x4 luma blocks with luma4x4BlklIdx = i8x8 * 4 + i4x4 containing every fourth transform coefficient
level of the corresponding i8x8-th 8x8 luma block with offset i4x4 are assumed to represent spatial locations given
by the inverse 4x4 luma block scanning process in subclause 6.4.3.

— Otherwise (entropy coding_mode flag is equal to 1), the 64 transform coefficient levels of the i8x8-th
block are parsed into the i8x8-th list level8x8[i8x8].

7.4.5.3.2 Residual block CAVLC semantics

The function TotalCoeff(coeff token) that is used in subclause 7.3.5.3.2 returns the number of non-zero transform
coefficient levels derived from coeff token.

The function TrailingOnes(coeff token) that is used in subclause 7.3.5.3.2 returns the trailing ones derived from
coeff token.

coeff_token specifies the total number of non-zero transform coefficient levels and the number of trailing one transform
coefficient levels in a transform coefficient level scan. A trailing one transform coefficient level is one of up to three
consecutive non-zero transform coefficient levels having an absolute value equal to 1 at the end of a scan of non-zero
transform coefficient levels. The range of coeff token is specified in subclause 9.2.1.

trailing_ones sign_flag specifies the sign of a trailing one transform coefficient level as follows.
— Iftrailing_ones_sign flag is equal to 0, the corresponding transform coefficient level is decoded as +1.
— Otherwise (trailing_ones_sign_flag equal to 1), the corresponding transform coefficient level is decoded as -1.

level prefix and level_suffix specify the value of a non-zero transform coefficient level. The range of level prefix and
level suffix is specified in subclause 9.2.2.

total_zeros specifies the total number of zero-valued transform coefficient levels that are located before the position of
the last non-zero transform coefficient level in a scan of transform coefficient levels. The range of total zeros is
specified in subclause 9.2.3.

run_before specifies the number of consecutive transform coefficient levels in the scan with zero value before a
non-zero valued transform coefficient level. The range of run_before is specified in subclause 9.2.3.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

7.4.5.3.3 Residual block CABAC semantics

coded_block_flag specifies whether the block contains non-zero transform coefficient levels as follows.

— Ifcoded block flag is equal to 0, the block contains no non-zero transform coefficient levels.

— Otherwise (coded block flag is equal to 1), the block contains at least one non-zero transform coefficient level.
When coded block flag is not present, it is inferred to be equal to 1.

significant_coeff_flag[i] specifies whether the transform coefficient level at scanning position i is non-zero as follows.
— Ifsignificant coeff flag[i] is equal to 0, the transform coefficient level at scanning position i is set equal to 0;

— Otherwise (significant coeff flag[i] is equal to 1), the transform coefficient level at scanning position i has a
non-zero value.

ITU-T Rec. H.264 (11/2007) 101

last_significant_coeff_flag[i] specifies for the scanning position i whether there are non-zero transform coefficient
levels for subsequent scanning positions i + 1 to maxNumCoeff — 1 as follows.

— Iflast_significant coeff flag[i] is equal to 1, all following transform coefficient levels (in scanning order) of the
block have value equal to 0.

— Otherwise (last_significant_coeff flag[i] is equal to 0), there are further non-zero transform coefficient levels
along the scanning path.

coeff_abs level_ minusl[i] is the absolute value of a transform coefficient level minus 1. The value of
coeff abs level minusl is constrained by the limits in subclause 8.5.

coeff_sign_flag[i] specifies the sign of a transform coefficient level as follows.
— Ifcoeff sign flag is equal to 0, the corresponding transform coefficient level has a positive value.
— Otherwise (coeff sign flag is equal to 1), the corresponding transform coefficient level has a negative value.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

8 Decoding process

Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).
Depending on the value of chroma format idc, the number of sample arrays of the current picture is as follows.

— Ifchroma format idc is equal to 0, the current picture consists of 1 sample array S;.

— Otherwise (chroma_format_idc is not equal to 0), the current picture consists of 3 sample arrays S;, Scp, Sc;-
This clause describes the decoding process, given syntax elements and upper-case variables from clause 7.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding
process that produces identical results to the process described here conforms to the decoding process requirements of
this Recommendation | International Standard.

Each picture referred to in this clause is a complete or part of a primary coded picture. Each slice referred to in this
clause is a slice of a primary coded picture. Each slice data partition referred to in this clause is a slice data partition of a
primary coded picture.

Depending on the value of separate colour plane flag, the decoding process is structured as follows.

— If separate_colour_plane flag is equal to 0, the decoding process is invoked a single time with the current picture
being the output.

— Otherwise (separate_colour plane flag is equal to 1), the decoding process is invoked three times. Inputs to the
decoding process are all NAL units of the primary coded picture with identical value of colour plane id. The
decoding process of NAL units with a particular value of colour plane id is specified as if only a coded video
sequence with monochrome colour format with that particular value of colour plane id would be present in the
bitstream. The output of each of the three decoding processes is assigned to the 3 sample arrays of the current
picture with the NAL units with colour plane id equal to O being assigned to S;, the NAL units with
colour plane id equal to 1 being assigned to Sc¢p, and the NAL units with colour plane id equal to 2 being
assigned to Sc;.

NOTE - The variable ChromaArrayType is derived as 0 when separate_colour _plane flag is equal to 1 and chroma_format_idc

is equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations identical to that of
monochrome pictures with chroma_format idc being equal to 0.

An overview of the decoding process is given as follows.
— The decoding of NAL units is specified in subclause 8.1.
— The processes in subclause 8.2 specify decoding processes using syntax elements in the slice layer and above.

— Variables and functions relating to picture order count are derived in subclause 8.2.1. (only needed to be
invoked for one slice of a picture).

— Variables and functions relating to the macroblock to slice group map are derived in subclause 8.2.2. (only
needed to be invoked for one slice of a picture).

— The method of combining the various partitions when slice data partitioning is used is described in subclause
8.2.3.

102 ITU-T Rec. H.264 (03/2005)

— When the frame num of the current picture is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum, the decoding process for gaps in frame num is performed
according to subclause 8.2.5.2 prior to the decoding of any slices of the current picture.

— At the beginning of the decoding process for each P, SP, or B slice, the decoding process for reference picture
lists construction specified in subclause 8.2.4 performed for derivation of reference picture list 0
(RefPicList0), and when decoding a B slice, reference picture list 1 (RefPicListl).

— When the current picture is a reference picture and after all slices of the current picture have been decoded,
the decoded reference picture marking process in subclause 8.2.5 specifies how the current picture is used in
the decoding process of inter prediction in later decoded pictures.

— The processes in subclauses 8.3, 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in the
macroblock layer and above.

— The intra prediction process for I and SI macroblocks, except for I PCM macroblocks as specified in
subclause 8.3, has intra prediction samples as its output. For I PCM macroblocks subclause 8.3 directly
specifies a picture construction process. The output are the constructed samples prior to the deblocking filter
process.

— The inter prediction process for P and B macroblocks is specified in subclause 8.4 with inter prediction
samples being the output.

— The transform coefficient decoding process and picture construction process prior to deblocking filter process
are specified in subclause 8.5. That process derives samples for I and B macroblocks and for P macroblocks in
P slices. The output are constructed samples prior to the deblocking filter process.

— The decoding process for P macroblocks in SP slices or SI macroblocks is specified in subclause 8.6. That
process derives samples for P macroblocks in SP slices and for SI macroblocks. The output are constructed
samples prior to the deblocking filter process.

— The constructed samples prior to the deblocking filter process that are next to the edges of blocks and
macroblocks are processed by a deblocking filter as specified in subclause 8.7 with the output being the
decoded samples.

8.1 NAL unit decoding process
Inputs to this process are NAL units.
Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the
decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Subclause 8.2 describes the decoding process for NAL units with nal_unit_type equal to 1 through 5.

Subclauses 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1, 2, and 5.

Subclause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal _unit type equal to 1 and 2.

Subclause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1 and 3 to 5.

Subclause 8.6 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit type equal to 1 and 3 to 5.

Subclause 8.7 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit type equal to 1 to 5.

NAL units with nal unit_type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively.
Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture
parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of
other NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each
sequence.

No normative decoding process is specified for NAL units with nal unit type equal to 6, 9, 10, 11, and 12.

ITU-T Rec. H.264 (11/2007) 103

8.2 Slice decoding process

8.21 Decoding processfor pictureorder count
Outputs of this process are TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable).

Picture order counts are used to determine initial picture orderings for reference pictures in the decoding of B slices (see
subclauses 8.2.4.2.3 and 8.2.4.2.4), to represent picture order differences between frames or fields for motion vector
derivation in temporal direct mode (see subclause 8.4.1.2.3), for implicit mode weighted prediction in B slices (see
subclause 8.4.2.3.2), and for decoder conformance checking (see subclause C.4).

Picture order count information is derived for every frame, field (whether decoded from a coded field or as a part of a
decoded frame), or complementary field pair as follows:

— Each coded frame is associated with two picture order counts, called TopFieldOrderCnt and BottomFieldOrderCnt
for its top field and bottom field, respectively.

— Each coded field is associated with a picture order count, called TopFieldOrderCnt for a coded top field and
BottomFieldOrderCnt for a bottom field.

— Each complementary field pair is associated with two picture order counts, which are the TopFieldOrderCnt for its
coded top field and the BottomFieldOrderCnt for its coded bottom field, respectively.

TopFieldOrderCnt and BottomFieldOrderCnt indicate the picture order of the corresponding top field or bottom field
relative to the first output field of the previous IDR picture or the previous reference picture including a
memory_management_control operation equal to 5 in decoding order.

TopFieldOrderCnt and BottomFieldOrderCnt are derived by invoking one of the decoding processes for picture order
count type 0, 1, and 2 in subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3, respectively. When the current picture includes a
memory management control operation equal to 5, after the decoding of the current picture, tempPicOrderCnt is set
equal to PicOrderCnt(CurrPic), TopFieldOrderCnt of the current picture (if any) is set equal to
TopFieldOrderCnt - tempPicOrderCnt, and BottomFieldOrderCnt of the current picture (if any) is set equal to
BottomFieldOrderCnt - tempPicOrderCnt.

The bitstream shall not contain data that results in Min(TopFieldOrderCnt, BottomFieldOrderCnt) not equal to O for a
coded IDR frame, TopFieldOrderCnt not equal to O for a coded IDR top field, or BottomFieldOrderCnt not equal to 0
for a coded IDR bottom field. Thus, at least one of TopFieldOrderCnt and BottomFieldOrderCnt shall be equal to O for
the fields of a coded IDR frame.

When the current picture is not an IDR picture, the following applies.

— Consider the list variable listD containing as elements the TopFieldOrderCnt and BottomFieldOrderCnt values
associated with the list of pictures including all of the following
— the first picture in the list is the previous picture of any of the following types
— an IDR picture
— apicture containing a memory_management control operation equal to 5
— the following additional pictures.

— If pic_order cnt type is equal to 0, all other pictures that follow in decoding order after the first picture in the
list and are not "non-existing" frames inferred by the decoding process for gaps in frame num specified in
subclause 8.2.5.2 and either precede the current picture in decoding order or are the current picture. When
pic_order cnt type is equal to 0 and the current picture is not a "non-existing" frame inferred by the decoding

process for gaps in frame num specified in subclause 8.2.5.2, the current picture is included in listD prior to
the invoking of the decoded reference picture marking process.

Otherwise (pic_order cnt type is not equal to 0), all other pictures that follow in decoding order after the first
picture in the list and either precede the current picture in decoding order or are the current picture. When
pic_order cnt type is not equal to 0, the current picture is included in listD prior to the invoking of the
decoded reference picture marking process.

— Consider the list variable listO which contains the elements of listD sorted in ascending order. listO shall not contain
any of the following.

— a pair of TopFieldOrderCnt and BottomFieldOrderCnt for a frame or complementary field pair that are not at
consecutive positions in listO.

— a TopFieldOrderCnt that has a value equal to another TopFieldOrderCnt.
— a BottomFieldOrderCnt that has a value equal to another BottomFieldOrderCnt.

104 ITU-T Rec. H.264 (03/2005)

— a BottomFieldOrderCnt that has a value equal to a TopFieldOrderCnt unless the BottomFieldOrderCnt and
TopFieldOrderCnt belong to the same coded frame or complementary field pair.

The bitstream shall not contain data that results in values of TopFieldOrderCnt, BottomFieldOrderCnt,
PicOrderCntMsb, or FrameNumOffset used in the decoding process as specified in subclauses 8.2.1.1 to 8.2.1.3 that
exceed the range of values from -2*! to 2*'-1, inclusive.

The function PicOrderCnt(picX) is specified as follows:

if(picX is a frame or a complementary field pair)
PicOrderCnt(picX) = Min(TopFieldOrderCnt, BottomFieldOrderCnt) of the frame or complementary field

pair picX
else if(picX is a top field)
PicOrderCnt(picX) = TopFieldOrderCnt of field picX (8-1)

else if(picX is a bottom field)
PicOrderCnt(picX) = BottomFieldOrderCnt of field picX

Then DiffPicOrderCnt(picA, picB) is specified as follows:

DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) - PicOrderCnt(picB) (8-2)

The bitstream shall not contain data that results in values of DiffPicOrderCnt(picA, picB) used in the decoding process
that exceed the range of -2'° to 2" - 1, inclusive.

NOTE 1 — Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in
the same output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are
negative.

NOTE 2 — Many applications assign PicOrderCnt(X) proportional to the sampling time of the picture X relative to the sampling
time of an IDR picture.

When the current picture includes a memory management_control operation equal to 5, PicOrderCnt(CurrPic) shall
be greater than PicOrderCnt(any other picture in listD).

8.2.1.1 Decoding processfor pictureorder count type0
This process is invoked when pic_order cnt_type is equal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order as specified in this
subclause.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.
The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows.

— If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal
to 0.

— Otherwise (the current picture is not an IDR picture), the following applies.

— If the previous reference picture in decoding order included a memory management control operation equal
to 5, the following applies.

- If the previous reference picture in decoding order is not a bottom field, prevPicOrderCntMsb is set equal
to 0 and prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt for the previous reference
picture in decoding order.

- Otherwise (the previous reference picture in decoding order is a bottom field), prevPicOrderCntMsb is
set equal to 0 and prevPicOrderCntLsb is set equal to 0.

— Otherwise (the previous reference picture in decoding order did not include a
memory_management_control operation equal to 5), prevPicOrderCntMsb is set equal to PicOrderCntMsb of
the previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the value of
pic_order cnt_lIsb of the previous reference picture in decoding order.

ITU-T Rec. H.264 (11/2007) 105

PicOrderCntMsb of the current picture is derived as follows:

if((pic_order cnt Isb < prevPicOrderCntLsb) &&

((prevPicOrderCntLsb — pic_order_cnt Isb) >= (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-3)
else if((pic_order_cnt_Isb > prevPicOrderCntLsb) &&

((pic_order cnt_lsb — prevPicOrderCntLsb) > (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsb — MaxPicOrderCntLsb
else

PicOrderCntMsb = prevPicOrderCntMsb

When the current picture is not a bottom field, TopFieldOrderCnt is derived as follows:

if(!field pic_flag || !'bottom_field flag)
TopFieldOrderCnt = PicOrderCntMsb + pic_order cnt_Isb (8-4)

When the current picture is not a top field, BottomFieldOrderCnt is derived as follows:

if(!field_pic_flag)
BottomFieldOrderCnt = TopFieldOrderCnt + delta_pic_order_cnt_bottom

else if(bottom_field flag) (8-5)
BottomFieldOrderCnt = PicOrderCntMsb + pic_order_cnt_Isb

8.2.1.2 Decoding processfor pictureorder count type 1l

This process is invoked when pic_order cnt type is equal to 1.

Input to this process is FrameNumOffset of the previous picture in decoding order as specified in this subclause.
Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The values of TopFieldOrderCnt and BottomFieldOrderCnt are derived as specified in this subclause. Let
prevFrameNum be equal to the frame num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

— If the previous picture in decoding order included a memory management control operation equal to 5,
prevFrameNumOffset is set equal to 0.

— Otherwise (the previous picture in decoding order did not include a memory management control operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE — When gaps in_frame num_ value allowed flag is equal to 1, the previous picture in decoding order may be a
"non-existing" frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.

The derivation proceeds in the following ordered steps.

1. The variable FrameNumOffset is derived as follows:

if(IdrPicFlag == 1)
FrameNumOffset = 0

else if(prevFrameNum > frame num) (8-6)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

2. The variable absFrameNum is derived as follows:

if(num_ref frames in pic order cnt cycle != 0)
absFrameNum = FrameNumOffset + frame num

else (8-7)
absFrameNum = 0

if(nal_ref idc == 0 && absFrameNum > 0)
absFrameNum = absFrameNum — 1

106 ITU-T Rec. H.264 (03/2005)

3. When absFrameNum > 0, picOrderCntCycleCnt and frameNumInPicOrderCntCycle are derived as follows:

if(absFrameNum > 0) {
picOrderCntCycleCnt = (absFrameNum — 1) / num_ref frames_in_pic_order cnt cycle
frameNumInPicOrderCntCycle = (absFrameNum — 1) % num_ref frames in_pic_order cnt cycle (8-8)

}

4. The variable expectedDeltaPerPicOrderCntCycle is derived as follows:

expectedDeltaPerPicOrderCntCycle = 0
for(i=0; i <num_ref frames in pic_order cnt cycle; i++)
expectedDeltaPerPicOrderCntCycle += offset for ref frame[i] (8-9)

5. The variable expectedPicOrderCnt is derived as follows:

if(absFrameNum > 0){
expectedPicOrderCnt = picOrderCntCycleCnt * expectedDeltaPerPicOrderCntCycle
for(i = 0; i <= frameNumInPicOrderCntCycle; i++)
expectedPicOrderCnt = expectedPicOrderCnt + offset for ref frame[i]

} else
expectedPicOrderCnt = 0
if(nal_ref idc == 0) (8-10)

expectedPicOrderCnt = expectedPicOrderCnt + offset for non_ref pic

6. The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as follows:

if(!field_pic _flag) {

TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[O]

BottomFieldOrderCnt = TopFieldOrderCnt +

offset_for top to bottom_field + delta pic_order cnt[1] (8-11)

} else if(!bottom_field flag)

TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[0]
else

BottomFieldOrderCnt = expectedPicOrderCnt + offset_for top to bottom field + delta pic_order cnt[O]

8.2.1.3 Decoding processfor pictureorder count type 2

This process is invoked when pic_order cnt type is equal to 2.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

Let prevFrameNum be equal to the frame num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

— If the previous picture in decoding order included a memory management control operation equal to 5,
prevFrameNumOffset is set equal to 0.

— Otherwise (the previous picture in decoding order did not include a memory management control operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE 1 — When gaps_in_frame num_value allowed flag is equal to 1, the previous picture in decoding order may be a
"non-existing" frame inferred by the decoding process for gaps in frame num specified in subclause 8.2.5.2.

The variable FrameNumOffset is derived as follows.

if(IdrPicFlag == 1)
FrameNumOffset = 0

else if(prevFrameNum > frame num) (8-12)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

ITU-T Rec. H.264 (11/2007) 107

The variable tempPicOrderCnt is derived as follows:

if(IdrPicFlag == 1)
tempPicOrderCnt = 0

else if(nal ref idc == 0) (8-13)
tempPicOrderCnt = 2 * (FrameNumOffset + frame num) — 1
else

tempPicOrderCnt = 2 * (FrameNumOffset + frame num)

The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as follows:

if(!field pic flag) {

TopFieldOrderCnt = tempPicOrderCnt

BottomFieldOrderCnt = tempPicOrderCnt (8-14)
} else if(bottom_field flag)

BottomFieldOrderCnt = tempPicOrderCnt
else

TopFieldOrderCnt = tempPicOrderCnt

NOTE 2 — Picture order count type 2 cannot be used in a coded video sequence that contains consecutive non-reference pictures
that would result in more than one of these pictures having the same value of TopFieldOrderCnt or more than one of these
pictures having the same value of BottomFieldOrderCnt.

NOTE 3 — Picture order count type 2 results in an output order that is the same as the decoding order.

8.2.2 Decoding processfor macrablock to slice group map
Inputs to this process are the active picture parameter set and the slice header of the slice to be decoded.
Output of this process is a macroblock to slice group map MbToSliceGroupMap.

This process is invoked at the start of every slice.
NOTE — The output of this process is equal for all slices of a picture.

When num_slice_groups_minus] is equal to 1 and slice group map_type is equal to 3, 4, or 5, slice groups 0 and 1
have a size and shape determined by slice group change direction flag as shown in Table 8-1 and specified in
subclauses 8.2.2.4 to 8.2.2.6.

Table 8-1 — Refined slice group map type

slice_group_map_type dlice_group_change _direction_flag | refined slice group map type
3 0 Box-out clockwise
3 1 Box-out counter-clockwise
4 0 Raster scan
4 1 Reverse raster scan
5 0 Wipe right
5 1 Wipe left

In such a case, MapUnitsInSliceGroup0 slice group map units in the specified growth order are allocated for slice group
0 and the remaining PicSizeInMapUnits — MapUnitsInSliceGroup0 slice group map units of the picture are allocated for
slice group 1.

When num_slice groups minusl is equal tol and slice group map type is equal to4 or 5, the variable
sizeOfUpperLeftGroup is defined as follows:

sizeOfUpperLeftGroup = (slice_group change direction_flag ?
(PicSizeInMapUnits — MapUnitsInSliceGroup0) : MapUnitsInSliceGroup0) (8-15)

108 ITU-T Rec. H.264 (03/2005)

The variable mapUnitToSliceGroupMap is derived as follows.

— If num_slice groups minusl is equal to 0, the map unit to slice group map is generated for all i ranging from 0 to
PicSizeInMapUnits — 1, inclusive, as specified by:

mapUnitToSliceGroupMap[i]=0 (8-16)

— Otherwise (num_slice_groups_minus1 is not equal to 0), mapUnitToSliceGroupMap is derived as follows.

— If slice group map type is equal to 0, the derivation of mapUnitToSliceGroupMap as specified in
subclause 8.2.2.1 applies.

— Otherwise, if slice_group map type is equal to 1, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.2 applies.

— Otherwise, if slice group map type is equal to 2, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.3 applies.

— Otherwise, if slice_group map type is equal to 3, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.4 applies.

— Otherwise, if slice group map type is equal to 4, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.5 applies.

— Otherwise, if slice_group map type is equal to 5, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.6 applies.

— Otherwise (slice_group map type is equal to 6), the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.7 applies.

After derivation of the mapUnitToSliceGroupMap, the process specified in subclause 8.2.2.8 is invoked to convert the
map unit to slice group map mapUnitToSliceGroupMap to the macroblock to slice group map MbToSliceGroupMap.
After derivation of the macroblock to slice group map as specified in subclause 8.2.2.8, the function
NextMbAddress(n) is defined as the value of the variable nextMbAddress derived as specified by:

i=n+1
while(i < PicSizeInMbs && MbToSliceGroupMap[i] = MbToSliceGroupMap[n |)
it+;
nextMbAddress = i (8-17)

8.2.2.1 Specification for interleaved slice group map type
The specifications in this subclause apply when slice_group map_type is equal to 0.
The map unit to slice group map is generated as specified by:

i=0

do

for(iGroup = 0; iGroup <= num_slice groups minusl && i < PicSizeInMapUnits;
i+=run_length minusl[iGroup++]+ 1)
for(j=0;j <=run_length minusl[iGroup] && i +j < PicSizeInMapUnits; j++)
mapUnitToSliceGroupMap[i +j] = iGroup (8-18)
while(i < PicSizeInMapUnits)

8.2.2.2 Specification for disper sed dice group map type
The specifications in this subclause apply when slice_group map_type is equal to 1.

The map unit to slice group map is generated as specified by:

for(1= 0; i < PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i] = ((1 % PicWidthInMbs) +
(((1i/PicWidthInMbs) * (num_slice_groups minusl +1))/2))
% (num_slice groups minusl + 1) (8-19)

8.2.2.3 Specification for foreground with left-over sice group map type

The specifications in this subclause apply when slice_group map_type is equal to 2.

ITU-T Rec. H.264 (11/2007) 109

The map unit to slice group map is generated as specified by:

for(i =0; i < PicSizelInMapUnits; i++)
mapUnitToSliceGroupMap[i] = num_slice groups minusl
for(iGroup = num_slice groups minusl — 1; iGroup >= 0; iGroup--) {
yTopLeft = top_left[iGroup]/ PicWidthInMbs
xTopLeft = top_left[iGroup] % PicWidthInMbs
yBottomRight = bottom_right[iGroup] / PicWidthInMbs
xBottomRight = bottom_right[iGroup] % PicWidthInMbs
for(y = yTopLeft; y <= yBottomRight; y++)
for(x = xTopLeft; x <= xBottomRight; x++)
mapUnitToSliceGroupMap|[y * PicWidthInMbs + x | = iGroup (8-20)
}

NOTE - The rectangles may overlap. Slice group 0 contains the macroblocks that are within the rectangle specified by
top_left[0] and bottom_right[0]. A slice group having slice group ID greater than 0 and less than num_slice groups minusl
contains the macroblocks that are within the specified rectangle for that slice group that are not within the rectangle specified for
any slice group having a smaller slice group ID. The slice group with slice group ID equal to num_slice groups_minus] contains
the macroblocks that are not in the other slice groups.

8.2.2.4 Specification for box-out slice group map types
The specifications in this subclause apply when slice_group map_type is equal to 3.

The map unit to slice group map is generated as specified by:

for(i = 0; i < PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i]=1
x = (PicWidthInMbs — slice_group change direction_flag) /2
y = (PicHeightInMapUnits — slice_group change direction flag) /2
(leftBound, topBound) = (x,y)
(rightBound, bottomBound) = (x,y)
(xDir, yDir) = (slice_group change direction flag — 1, slice group change direction flag)
for(k = 0; k < MapUnitsInSliceGroup0; k += mapUnitVacant) {
mapUnitVacant = (mapUnitToSliceGroupMap[y * PicWidthInMbs +x] == 1)

if(mapUnitVacant)
mapUnitToSliceGroupMap[y * PicWidthInMbs +x] =0 (8-21)
if(xDir == -1 && x == leftBound) {

leftBound = Max(leftBound — 1, 0)

x = leftBound

(xDir, yDir) = (0, 2 * slice_group_change direction_flag— 1)
}else if(xDir == 1 && x == rightBound) {

rightBound = Min(rightBound + 1, PicWidthInMbs — 1)

x = rightBound

(xDir, yDir)= (0, 1 —2 * slice_group_change direction flag)

} else if(yDir == -1 && y == topBound) {
topBound = Max(topBound -1, 0)
y = topBound

(xDir, yDir) =(1 —2 * slice_group change direction_flag, 0)
}else if(yDir == 1 && y == bottomBound) {
bottomBound = Min(bottomBound + 1, PicHeightInMapUnits — 1)
y = bottomBound
(xDir, yDir) = (2 * slice_group change direction flag—1,0)
} else
(x,y)=(x+xDir,y+ yDir)

8.2.25 Specification for raster scan slice group map types

The specifications in this subclause apply when slice_group map_type is equal to 4.

110 ITU-T Rec. H.264 (03/2005)

The map unit to slice group map is generated as specified by:

for(i =0; i <PicSizeInMapUnits; i++)
if(1 < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap][i] = slice_group change direction_flag
else (8-22)
mapUnitToSliceGroupMap[i] = 1 —slice_group change direction_flag

8.2.2.6 Specification for wipe dice group map types
The specifications in this subclause apply when slice_group map_type is equal to 5.
The map unit to slice group map is generated as specified by:

k=0;

for(j = 0; j < PicWidthInMbs; j++)

for(1= 0; i < PicHeightInMapUnits; i++)
if(k++ < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap| i * PicWidthInMbs + j] = slice_group change direction_flag

else (8-23)
mapUnitToSliceGroupMap[i * PicWidthInMbs +j] =1 —slice_group change direction_flag

8.2.2.7 Specification for explicit slice group map type
The specifications in this subclause apply when slice_group map_type is equal to 6.

The map unit to slice group map is generated as specified by:

mapUnitToSliceGroupMap][i] = slice_group id[1] (8-24)

for all i ranging from 0 to PicSizeInMapUnits — 1, inclusive.

8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map

For each value of i ranging from 0 to PicSizeInMbs — 1, inclusive, the macroblock to slice group map is specified as
follows.

— If frame _mbs_only flag is equal to 1 or field pic_flag is equal to 1, the macroblock to slice group map is specified
by:

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap][i] (8-25)

— Otherwise, if MbaffFrameFlag is equal to 1, the macroblock to slice group map is specified by:

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap[i/2] (8-26)

— Otherwise (frame_mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and field pic flag
is equal to 0), the macroblock to slice group map is specified by:

MbToSliceGroupMap| i | = mapUnitToSliceGroupMap[(i/(2 * PicWidthInMbs)) * PicWidthInMbs
+ (1 % PicWidthInMbs)] (8-27)

8.23 Decoding processfor dice data partitioning

Inputs to this process are
— aslice data partition A layer RBSP,

— when syntax elements of category 3 are present in the slice data, a slice data partition B layer RBSP having the
same slice id as in the slice data partition A layer RBSP, and

— when syntax elements of category 4 are present in the slice data, a slice data partition C layer RBSP having the
same slice id as in the slice data partition A layer RBSP.

NOTE 1 — The slice data partition B layer RBSP and slice data partition C layer RBSP need not be present.

Output of this process is a coded slice.

ITU-T Rec. H.264 (11/2007) 111

When slice data partitioning is not used, coded slices are represented by a slice layer without partitioning RBSP that
contains a slice header followed by a slice data syntax structure that contains all the syntax elements of categories 2, 3,
and 4 (see category column in subclause 7.3) of the macroblock data for the macroblocks of the slice.

When slice data partitioning is used, the macroblock data of a slice is partitioned into one to three partitions contained
in separate NAL units. Partition A contains a slice data partition A header, and all syntax elements of category 2.
Partition B, when present, contains a slice data partition B header and all syntax elements of category 3. Partition C,
when present, contains a slice data partition C header and all syntax elements of category 4.

When slice data partitioning is used, the syntax elements of each category are parsed from a separate NAL unit, which
need not be present when no symbols of the respective category exist. The decoding process shall process the slice data
partitions of a coded slice in a manner equivalent to processing a corresponding slice layer without partitioning RBSP
by extracting each syntax element from the slice data partition in which the syntax element appears depending on the
slice data partition assignment in the syntax tables in subclause 7.3.
NOTE 2 — Syntax elements of category 3 are relevant to the decoding of residual data of I and SI macroblock types. Syntax
elements of category 4 are relevant to the decoding of residual data of P and B macroblock types. Category 2 encompasses all
other syntax elements related to the decoding of macroblocks, and their information is often denoted as header information. The
slice data partition A header contains all the syntax elements of the slice header, and additionally a slice id that are used to
associate the slice data partitions B and C with the slice data partition A. The slice data partition B and C headers contain the
slice_id syntax element that establishes their association with the slice data partition A of the slice.

8.24 Decoding processfor reference picturelists construction
This process is invoked at the beginning of decoding of each P, SP, or B slice.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified
by the bitstream and specified in subclause 8.2.5. Short-term reference pictures are identified by the value of
frame num. Long-term reference pictures are assigned a long-term frame index as specified by the bitstream and
specified in subclause 8.2.5.

Subclause 8.2.4.1 is invoked to specify

— the assignment of variables FrameNum, FrameNumWTrap, and PicNum to each of the short-term reference pictures,
and

— the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an
index into a reference picture list. When decoding a P or SP slice, there is a single reference picture list RefPicList0.
When decoding a B slice, there is a second independent reference picture list RefPicListl in addition to RefPicList0.

At the beginning of decoding of each slice, reference picture list RefPicList0, and for B slices RefPicListl, are derived
as follows.

— An initial reference picture list RefPicList0 and for B slices RefPicListl are derived as specified in
subclause 8.2.4.2.

— The initial reference picture list RefPicList0 and for B slices RefPicList]l are modified as specified in
subclause 8.2.4.3.
NOTE - The reordering process for reference picture lists specified in subclause 8.2.4.3 allows the contents of RefPicList0 and
for B slices RefPicListl to be modified in a flexible fashion. In particular, it is possible for a picture that is currently marked

"used for reference" to be inserted into RefPicList0 and for B slices RefPicListl even when the picture is not in the initial
reference picture list derived as specified in subclause 8.2.4.2.

The number of entries in the modified reference picture list RefPicList0 is num ref idx 10 active minusl + 1, and for
B slices the number of entries in the modified reference picture list RefPicListl is num ref idx 11 active minusl + 1.
A reference picture may appear at more than one index in the modified reference picture lists RefPicList0 or
RefPicListl.

8.24.1 Decoding processfor picture numbers

This process is invoked when the decoding process for reference picture lists construction specified in subclause 8.2.4
or the decoded reference picture marking process specified in subclause 8.2.5 is invoked.

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameldx, and LongTermPicNum are used for the
initialisation process for reference picture lists in subclause 8.2.4.2, the modification process for reference picture lists
in subclause 8.2.4.3, and for the decoded reference picture marking process in subclause 8.2.5.

112 ITU-T Rec. H.264 (03/2005)

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First,
FrameNum is set equal to the syntax element frame num that has been decoded in the slice header(s) of the
corresponding short-term reference picture. Then the variable FrameNumWrap is derived as

if(FrameNum > frame num)

FrameNumWrap = FrameNum — MaxFrameNum (8-28)
else

FrameNumWrap = FrameNum

where the value of frame num used in Equation 8-28 is the frame num in the slice header(s) for the current picture.

Each long-term reference picture has an associated value of LongTermFrameldx (that was assigned to it as specified in
subclause 8.2.5).

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable
LongTermPicNum is assigned. The values of these variables depend on the value of field pic flag and
bottom_field flag for the current picture and they are set as follows.

— Iffield pic_ flag is equal to 0, the following applies.

— For each short-term reference frame or complementary reference field pair:

PicNum = FrameNumWTrap (8-29)

— For each long-term reference frame or long-term complementary reference field pair:

LongTermPicNum = LongTermFrameldx (8-30)

NOTE — When decoding a frame the value of MbaffFrameFlag has no influence on the derivations in subclauses
8.2.4.2,8.2.4.3,and 8.2.5.

— Otherwise (field pic_flag is equal to 1), the following applies.
— For each short-term reference field the following applies.

— If the reference field has the same parity as the current field

PicNum = 2 * FrameNumWrap + 1 (8-31)

— Otherwise (the reference field has the opposite parity of the current field),

PicNum = 2 * FrameNumWTrap (8-32)

— For each long-term reference field the following applies.

- If the reference field has the same parity as the current field

LongTermPicNum = 2 * LongTermFrameldx + 1 (8-33)

- Otherwise (the reference field has the opposite parity of the current field),

LongTermPicNum = 2 * LongTermFrameldx (8-34)

8.2.4.2 Initialisation processfor reference picturelists
This initialisation process is invoked when decoding a P, SP, or B slice header.
RefPicList0 and RefPicList]l have initial entries as specified in subclauses 8.2.4.2.1 through 8.2.4.2.5.

When the number of entries in the initial RefPicList0 or RefPicListl produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is greater than num ref idx 10 active minusl +1 or num ref idx 11 active minusl + 1,
respectively, the extra entries past position num_ref idx 10 active minusl or num ref idx 11 active minusl are
discarded from the initial reference picture list.

ITU-T Rec. H.264 (11/2007) 113

When the number of entries in the initial RefPicList0 or RefPicListl produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is less than num_ref idx 10 active minusl + 1 or num_ref idx 11 _active minusl + 1, respectively,
the remaining entries in the initial reference picture list are set equal to "no reference picture".

8.2.4.2.1 Initialisation processfor thereference picturelist for P and SP dlicesin frames
This initialisation process is invoked when decoding a P or SP slice in a coded frame.

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is
currently marked as "used for short-term reference" or "used for long-term reference".

The reference picture list RefPicListO is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs.

The short-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the highest PicNum value and proceeding through in descending order to the frame or
complementary field pair with the lowest PicNum value.

The long-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the lowest LongTermPicNum value and proceeding through in ascending order to the
frame or complementary field pair with the highest LongTermPicNum value.

NOTE — A non-paired reference field is not used for inter prediction for decoding a frame, regardless of the value of
MbaffFrameFlag.

For example, when three reference frames are marked as "used for short-term reference" with PicNum equal to 300,
302, and 303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0
and 3, the initial index order is:

— RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,
— RefPicList0[1] is set equal to the short-term reference picture with PicNum = 302,
— RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,
— RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0, and

— RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

8.2.4.2.2 Initialisation processfor thereference picturelist for P and SP dlicesin fields
This initialisation process is invoked when decoding a P or SP slice in a coded field.

Each field included in the reference picture list RefPicList0 has a separate index in the reference picture list
RefPicListO.

NOTE — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Two ordered lists of reference frames, refFrameListOShortTerm and refFrameListOLongTerm, are derived as follows.
For purposes of the formation of this list of frames, decoded reference frames, complementary reference field pairs,
non-paired reference fields and reference frames in which a single field is marked "used for short-term reference" or
"used for long-term reference" are all considered reference frames.

— All frames having one or more fields marked "used for short-term reference" are included in the list of short-term
reference frames refFrameListOShortTerm. When the current field is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for short-term reference", the first field is
included in the list of short-term reference frames refFrameListOShortTerm. refFrameListOShortTerm is ordered
starting with the reference frame with the highest FrameNumWrap value and proceeding through in descending
order to the reference frame with the lowest FrameNumWrap value.

— All frames having one or more fields marked "used for long-term reference" are included in the list of long-term
reference frames refFrameListOLongTerm. When the current field is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for long-term reference, the first field is
included in the list of long-term reference frames refFrameListOLongTerm. refFrameListOLongTerm is ordered
starting with the reference frame with the lowest LongTermFrameldx value and proceeding through in ascending
order to the reference frame with the highest LongTermFrameldx value.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListOLongTerm
given as input and the output is assigned to RefPicList0.

114 ITU-T Rec. H.264 (03/2005)

8.2.4.2.3 Initialisation processfor reference picturelistsfor B dicesin frames
This initialisation process is invoked when decoding a B slice in a coded frame.

For purposes of the formation of the reference picture lists RefPicList0 and RefPicListl the term reference entry refers
in the following to decoded reference frames or complementary reference field pairs.

When this process is invoked, there shall be at least one reference entry that is currently marked as "used for short-term
reference" or "used for long-term reference".

For B slices, the order of short-term reference entries in the reference picture lists RefPicList0 and RefPicListl depends
on output order, as given by PicOrderCnt(). When pic_order cnt_type is equal to 0, reference pictures that are marked
as "non-existing" as specified in subclause 8.2.5.2 are not included in either RefPicList0 or RefPicListl.

NOTE 1 — When gaps_in_frame num_value allowed flag is equal to 1, encoders should use reference picture list reordering to

ensure proper operation of the decoding process (particularly when pic order cnt type is equal to 0, in which case
PicOrderCnt() is not inferred for "non-existing" frames).

The reference picture list RefPicList0 is ordered such that short-term reference entries have lower indices than
long-term reference entries. It is ordered as follows.

— Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short-term
reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm) less than
PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refPicList0 in descending
order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when present) are then
appended to refPicList0 in ascending order of PicOrderCnt(entryShortTerm).

— The long-term reference entries are ordered starting with the long-term reference entry that has the lowest
LongTermPicNum value and proceeding through in ascending order to the long-term reference entry that has the
highest LongTermPicNum value.

The reference picture list RefPicListl is ordered so that short-term reference entries have lower indices than long-term
reference entries. It is ordered as follows.

— Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short-term
reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm) greater than
PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refPicListl in ascending
order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when present) are then
appended to refPicListl in descending order of PicOrderCnt(entryShortTerm).

— Long-term reference entries are ordered starting with the long-term reference frame or complementary reference
field pair that has the lowest LongTermPicNum value and proceeding through in ascending order to the long-term
reference entry that has the highest LongTermPicNum value.

— When the reference picture list RefPicList] has more than one entry and RefPicListl is identical to the reference
picture list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

NOTE 2 — A non-paired reference field is not used for inter prediction of frames (independent of the value of MbaffFrameFlag).

8.2.4.2.4 Initialisation processfor referencepicturelistsfor B slicesin fields
This initialisation process is invoked when decoding a B slice in a coded field.

When decoding a field, each field of a stored reference frame is identified as a separate reference picture with a unique
index. The order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicList]l depend on
output order, as given by PicOrderCnt(). When pic_order cnt type is equal to 0, reference pictures that are marked as
"non-existing" as specified in subclause 8.2.5.2 are not included in either RefPicListO or RefPicList1.

NOTE 1 — When gaps_in_frame num_value allowed flag is equal to 1, encoders should use reference picture list reordering to

ensure proper operation of the decoding process (particularly when pic order cnt type is equal to 0, in which case
PicOrderCnt() is not inferred for "non-existing" frames).

NOTE 2 — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Three ordered lists of reference frames, refFrameListOShortTerm, refFrameListlShortTerm and
refFrameListLongTerm, are derived as follows. For purposes of the formation of these lists of frames the term reference
entry refers in the following to decoded reference frames, complementary reference field pairs, or non-paired reference
fields. When pic_order cnt type is equal to 0, the term reference entry does not refer to frames that are marked as
"non-existing" as specified in subclause 8.2.5.2.

ITU-T Rec. H.264 (11/2007) 115

— Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short-term
reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm) less than or
equal to PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of
refFrameListOShortTerm in descending order of PicOrderCnt(entryShortTerm). All of the remaining values of
entryShortTerm (when present) are then appended to refFrameListOShortTerm in ascending order of
PicOrderCnt(entryShortTerm).

NOTE 3 — When the current field follows in decoding order a coded field fldPrev with which together it forms a

complementary reference field pair, fldPrev is included into the list refFrameListOShortTerm using PicOrderCnt(fldPrev)
and the ordering method described in the previous sentence is applied.

— Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short-term
reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm) greater than
PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refFrameList] ShortTerm in
ascending order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when present)
are then appended to refFrameList] ShortTerm in descending order of PicOrderCnt(entryShortTerm).

NOTE 4 — When the current field follows in decoding order a coded field fldPrev with which together it forms a

complementary reference field pair, fldPrev is included into the list refFrameList] ShortTerm using PicOrderCnt(fldPrev)
and the ordering method described in the previous sentence is applied.

— refFrameListLongTerm is ordered starting with the reference entry having the lowest LongTermFrameldx value and
proceeding through in ascending order to the reference entry having highest LongTermFrameldx value.
NOTE 5 — When the complementary field of the current picture is marked "used for long-term reference" it is included into the

list refFrameListLongTerm. A reference entry in which only one field is marked as “used for long-term reference” is included
into the list refFrameListLongTerm.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListLongTerm
given as input and the output is assigned to RefPicList0.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListl ShortTerm and refFrameListLongTerm
given as input and the output is assigned to RefPicList1.

When the reference picture list RefPicList] has more than one entry and RefPicList] is identical to the reference picture
list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

8.2.4.2.5 Initialisation processfor reference picturelistsin fields

Inputs of this process are the reference frame lists refFrameListXShortTerm (with X may be 0 or 1) and
refFrameListLongTerm.

The reference picture list RefPicListX is a list ordered such that short-term reference fields have lower indices than
long-term reference fields. Given the reference frame lists refFrameListXShortTerm and refFrameListLongTerm, it is
derived as follows.

— Short-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListXShortTerm by alternating between fields of differing parity, starting with a field that has the same
parity as the current field (when present). When one field of a reference frame was not decoded or is not marked as
“used for short-term reference”, the missing field is ignored and instead the next available stored reference field of
the chosen parity from the ordered list of frames refFrameListXShortTerm is inserted into RefPicListX. When there
are no more short-term reference fields of the alternate parity in the ordered list of frames refFrameListXShortTerm,
the next not yet indexed fields of the available parity are inserted into RefPicListX in the order in which they occur
in the ordered list of frames refFrameListXShortTerm.

— Long-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListLongTerm by alternating between fields of differing parity, starting with a field that has the same parity
as the current field (when present). When one field of a reference frame was not decoded or is not marked as “used
for long-term reference”, the missing field is ignored and instead the next available stored reference field of the
chosen parity from the ordered list of frames refFrameListLongTerm is inserted into RefPicListX. When there are
no more long-term reference fields of the alternate parity in the ordered list of frames refFrameListLongTerm, the
next not yet indexed fields of the available parity are inserted into RefPicListX in the order in which they occur in
the ordered list of frames refFrameListLongTerm.

8.24.3 Reordering processfor reference picturelists
When ref pic_list reordering flag 10 is equal to 1, the following applies.
— Let refldxL0 be an index into the reference picture list RefPicList0. It is initially set equal to 0.

— The corresponding syntax elements reordering of pic nums idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

116 ITU-T Rec. H.264 (03/2005)

If reordering_of pic nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.4.3.1 is invoked
with refldxL0 as input, and the output is assigned to refldxLO0.

Otherwise, if reordering_of pic nums idc is equal to 2, the process specified in subclause 8.2.4.3.2 is invoked
with refldxL0 as input, and the output is assigned to refldxLO0.

Otherwise (reordering of pic nums_idc is equal to 3), the reordering process for reference picture list
RefPicList0 is finished.

When ref pic_list reordering flag 11 is equal to 1, the following applies.

— Let refldxL1 be an index into the reference picture list RefPicListl. It is initially set equal to 0.

— The corresponding syntax elements reordering of pic nums idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

If reordering_of pic nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.4.3.1 is invoked
with refldxL1 as input, and the output is assigned to refldxL1.

Otherwise, if reordering_of pic_nums_idc is equal to 2, the process specified in subclause 8.2.4.3.2 is invoked
with refldxL1 as input, and the output is assigned to refldxL1.

Otherwise (reordering of pic nums_idc is equal to 3), the reordering process for reference picture list
RefPicListl is finished.

8.2.4.3.1 Reordering process of reference picture listsfor short-term reference pictures

Input to this process is an index refldxLX (with X being 0 or 1).

Output of this process is an incremented index refldxLX.

The variable picNumLXNoWrap is derived as follows.

— Ifreordering_of pic nums_idc is equal to 0

if(picNumLXPred — (abs_diff pic num minusl +1)<0)

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1) + MaxPicNum (8-35)
else

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1)

— Otherwise (reordering_of pic_nums_idc is equal to 1),

if(picNumLXPred + (‘abs_diff pic num minusl +1) >= MaxPicNum)

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1) — MaxPicNum (8-36)
else

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1)

picNumLXPred is the prediction value for the variable picNumLXNoWrap. When the process specified in this
subclause is invoked the first time for a slice (that is, for the first occurrence of reordering_of pic nums_idc equal to 0
or 1 in the ref pic list reordering() syntax), picNumLOPred and picNumL1Pred are initially set equal to CurrPicNum.
After each assignment of picNumLXNoWrap, the value of picNumLXNoWrap is assigned to picNumLXPred.

The variable picNumLX is derived as follows

if(picNumLXNoWrap > CurrPicNum)

picNumLX = picNumLXNoWrap — MaxPicNum (8-37)
else

picNumLX = picNumLXNoWrap

picNumLX shall be equal to the PicNum of a reference picture that is marked as “used for short-term reference” and
shall not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".

The following procedure is conducted to place the picture with short-term picture number picNumLX into the index
position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

ITU-T Rec. H.264 (11/2007) 117

for(cldx =num_ref idx IX active minusl + 1; cldx > refldxLX; cIdx--)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++ | = short-term reference picture with PicNum equal to picNumLX
nldx = refldxLX
for(cldx = refldxLX; cldx <= num_ref idx IX active minusl + 1; cldx++) (8-38)
if(PicNumF(RefPicListX[cldx]) != picNumLX)
RefPicListX[nldx++] = RefPicListX[cldx]

where the function PicNumF(RefPicListX[cldx]) is derived as follows:

— If the picture RefPicListX][cldx] is marked as "used for short-term reference", PicNumF(RefPicListX[cldx]) is
the PicNum of the picture RefPicListX[cldx].

— Otherwise (the picture RefPicListX[cldx] is not marked as "used for short-term reference"),
PicNumF(RefPicListX[cldx]) is equal to MaxPicNum.
NOTE 1 — A value of MaxPicNum can never be equal to picNumLX.

NOTE 2 — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx 1X active minus] of
the list need to be retained.

8.2.4.3.2 Reordering process of reference picturelistsfor long-term reference pictures
Input to this process is an index refldxLX (with X being 0 or 1).
Output of this process is an incremented index refldxLX.

The following procedure is conducted to place the picture with long-term picture number long_term_pic_num into the
index position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

for(cldx =num _ref idx IX active minusl + 1; cldx > refldxLX; cldx--)
RefPicListX][cldx] = RefPicListX][cldx — 1]
RefPicListX[refldxLX++] = long-term reference picture with LongTermPicNum equal to long_term pic_num
nldx = refldxLX
for(cIdx = refldxLX; cldx <= num_ref idx IX active minusl + 1; cIdx++) (8-39)
if(LongTermPicNumF(RefPicListX[cldx]) !=long_term pic num)
RefPicListX[nldx++] = RefPicListX[cldx]

where the function LongTermPicNumF(RefPicListX[cldx]) is derived as follows:

— If the picture RefPicListX][cldx] is marked as "used for long-term reference",
LongTermPicNumF(RefPicListX[cldx]) is the LongTermPicNum of the picture RefPicListX] cldx].

— Otherwise (the picture RefPicListX[cldx] 1is not marked as "used for long-term reference"),
LongTermPicNumF(RefPicListX[cldx]) is equal to 2 * (MaxLongTermFrameldx + 1).
NOTE 1 — A value of 2 * (MaxLongTermFrameldx + 1) can never be equal to long_term_pic_num.

NOTE 2 — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx_1X active _minusl of
the list need to be retained.

8.25 Decoded reference picture marking process

This process is invoked for decoded pictures when nal_ref idc is not equal to 0.

NOTE - The decoding process for gaps in frame num that is specified in subclause 8.2.5.2 may also be invoked when
nal_ref idc is equal to 0, as specified in clause 8.

A decoded picture with nal _ref idc not equal to 0, referred to as a reference picture, is marked as “used for short-term
reference” or "used for long-term reference". For a decoded reference frame, both of its fields are marked the same as
the frame. For a complementary reference field pair, the pair is marked the same as both of its fields. A picture that is
marked as "used for short-term reference" is identified by its FrameNum and, when it is a field, by its parity. A picture
that is marked as "used for long-term reference" is identified by its LongTermFrameldx and, when it is a field, by its

parity.

Frames or complementary field pairs marked as “used for short-term reference” or as "used for long-term reference" can
be used as a reference for inter prediction when decoding a frame until the frame, the complementary field pair, or one
of its constituent fields is marked as “unused for reference”. A field marked as “used for short-term reference” or as

118 ITU-T Rec. H.264 (03/2005)

"used for long-term reference" can be used as a reference for inter prediction when decoding a field until marked as
“unused for reference”.

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in,
first-out mechanism specified in subclause 8.2.5.3 or by the adaptive memory control reference picture marking
process, a customised adaptive marking operation specified in subclause 8.2.5.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and
FrameNumWrap and its picture number PicNum, and a long-term reference picture is identified for use in the decoding
process by its long-term picture number LongTermPicNum. When the current picture is not an IDR picture,
subclause 8.2.4.1 is invoked to specify the assignment of the variables FrameNum, FrameNumWrap, PicNum and
LongTermPicNum.

8.25.1 Sequence of operationsfor decoded reference picture marking process
Decoded reference picture marking proceeds in the following ordered steps.
1. Allslices of the current picture are decoded.
2. Depending on whether the current picture is an IDR picture, the following applies.
— If the current picture is an IDR picture, the following applies.
— All reference pictures are marked as "unused for reference".
— Depending on long_term_reference flag, the following applies.

— If long_term reference flag is equal to 0, the IDR picture is marked as "used for short-term reference"
and MaxLongTermFrameldx is set equal to “no long-term frame indices”.

— Otherwise (long_term_reference flag is equal to 1), the IDR picture is marked as "used for long-term
reference", the LongTermFrameldx for the IDR picture is set equal to 0, and MaxLongTermFrameldx is
set equal to 0.

— Otherwise (the current picture is not an IDR picture), the following applies.
— Ifadaptive ref pic marking mode flag is equal to 0, the process specified in subclause 8.2.5.3 is invoked.

— Otherwise (adaptive_ref pic_marking mode flag is equal to 1), the process specified in subclause 8.2.5.4 is
invoked.

3. When the current picture is not an IDR picture and it was not marked as "used for long-term reference" by
memory_management_control operation equal to 6, it is marked as "used for short-term reference".

After marking the current decoded reference picture, the total number of frames with at least one field marked as “used
for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus
the number of non-paired fields marked as “used for reference” shall not be greater than Max(num_ref frames, 1).

8.25.2 Decoding processfor gapsin frame _num

This process is invoked when frame num is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum.
NOTE 1 — Although this process is specified as a subclause within subclause 8.2.5 (which defines a process that is invoked only

when nal_ref idc is not equal to 0), this process may also be invoked when nal_ref idc is equal to 0 (as specified in clause 8).
The reasons for the location of this subclause within the structure of this Recommendation | International Standard are historical.

NOTE 2 — This process can only be invoked for a conforming bitstream when gaps in_frame num_value allowed flag is equal
to 1. When gaps_in_frame num_value allowed flag is equal to 0 and frame num is not equal to PrevRefFrameNum and is not
equal to (PrevRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of pictures.

When this process is invoked, a set of values of frame num pertaining to “non-existing” pictures is derived as all values
taken on by UnusedShortTermFrameNum in Equation 7-22 except the value of frame num for the current picture.

The decoding process generates and marks a frame for each of the values of frame num pertaining to “non-existing”
pictures, in the order in which the values of UnusedShortTermFrameNum are generated by Equation 7-22, using the
“sliding window” picture marking process as specified in subclause 8.2.5.3. The generated frames are also marked as
“non-existing” and “used for short-term reference”. The sample values of the generated frames may be set to any value.
The bitstream shall not contain data that results in a reference to these generated frames which are marked as
“non-existing” in the inter prediction process, a reference to these frames in the reordering commands for reference
picture lists for short-term reference pictures (subclause 8.2.4.3.1), or a reference to these frames in the assignment
process of a LongTermFrameldx to a short-term reference picture (subclause 8.2.5.4.3).

ITU-T Rec. H.264 (11/2007) 119

When pic_order cnt_type is not equal to 0, TopFieldOrderCnt and BottomFieldOrderCnt are derived for each of the
"non-existing" frames by invoking the decoding process for picture order count in subclause 8.2.1. When invoking the
process in subclause 8.2.1 for a particular "non-existing" frame, the current picture is considered to be a picture
considered having frame num inferred to be equal to UnusedShortTermFrameNum, nal ref idc inferred to be not equal
to 0, nal_unit_type inferred to be not equal to 5, IdrPicFlag inferred to be equal to 0, field pic flag inferred to be equal
to 0, adaptive ref pic marking mode flag inferred to be equal to 0, delta pic order cnt[O | (if needed) inferred to be
equal to 0, and delta_pic_order cnt[1] (if needed) inferred to be equal to 0.
NOTE 3 — The decoding process should infer an unintentional picture loss when any of these values of frame num pertaining to
“non-existing” pictures is referred to in the inter prediction process, is referred to in the reordering commands for reference
picture lists for short-term reference pictures (subclause 8.2.4.3.1), or is referred to in the assignment process of a
LongTermFrameldx to a short-term reference picture (subclause 8.2.5.4.3). The decoding process should not infer an
unintentional picture loss when a memory management control operation not equal to 3 is applied to a frame marked as
“non-existing”.

8.25.3 Sliding window decoded refer ence picture marking process
This process is invoked when adaptive ref pic_marking mode flag is equal to 0.
Depending on the properties of the current picture as specified below, the following applies.

— If the current picture is a coded field that is the second field in decoding order of a complementary reference field
pair, and the first field has been marked as “used for short-term reference”, the current picture is also marked as
“used for short-term reference”.

— Otherwise, the following applies.

— Let numShortTerm be the total number of reference frames, complementary reference field pairs and non-paired
reference fields for which at least one field is marked as “used for short-term reference”. Let numLongTerm be
the total number of reference frames, complementary reference field pairs and non-paired reference fields for
which at least one field is marked as “used for long-term reference”.

— When numShortTerm + numLongTerm is equal to Max(num_ref frames, 1), the condition that numShortTerm
is greater than O shall be fulfilled, and the short-term reference frame, complementary reference field pair or
non-paired reference field that has the smallest value of FrameNumWrap is marked as “unused for reference”.
When it is a frame or a complementary field pair, both of its fields are also marked as “unused for reference”.

8.25.4 Adaptive memory control decoded reference picture marking process
This process is invoked when adaptive ref pic_marking mode flag is equal to 1.

The memory_management_control operation commands with values of 1 to 6 are processed in the order they occur in
the bitstream after the current picture has been decoded. For each of these memory management control operation
commands, one of the processes specified in subclauses 8.2.5.4.1 to 8.2.5.4.5 is invoked depending on the value of
memory_management_control operation. The memory management control operation command with value of 0
specifies the end of memory management control operation commands.

Memory management control operations are applied to pictures as follows.

— If field pic_flag is equal to 0, memory management control operation commands are applied to the frames or
complementary reference field pairs specified.

— Otherwise (field pic flag is equal to 1), memory management control operation commands are applied to the
individual reference fields specified.

8.2.5.4.1 Marking process of a short-term reference picture as“unused for reference’

This process is invoked when memory _management_control _operation is equal to 1.

Let picNumX be specified by

picNumX = CurrPicNum — (difference of pic nums minusl + 1). (8-40)

Depending on field pic flag the value of picNumX is used to mark a short-term reference picture as “unused for
reference” as follows.

— If field pic flag is equal to 0, the short-term reference frame or short-term complementary reference field pair
specified by picNumX and both of its fields are marked as “unused for reference”.

— Otherwise (field_pic_flag is equal to 1), the short-term reference field specified by picNumX is marked as “unused
for reference”. When that reference field is part of a reference frame or a complementary reference field pair, the

120 ITU-T Rec. H.264 (03/2005)

frame or complementary field pair is also marked as "unused for reference", but the marking of the other field is
not changed.

8.2.5.4.2 Marking process of along-term reference picture as“ unused for reference”
This process is invoked when memory management control operation is equal to 2.

Depending on field pic flag the value of LongTermPicNum is used to mark a long-term reference picture as “unused
for reference” as follows.

— If field pic_flag is equal to 0, the long-term reference frame or long-term complementary reference field pair
having LongTermPicNum equal to long term pic num and both of its fields are marked as “unused for
reference”.

— Otherwise (field pic_flag is equal to 1), the long-term reference field specified by LongTermPicNum equal to
long_term pic_num is marked as “unused for reference”. When that reference field is part of a reference frame or
a complementary reference field pair, the frame or complementary field pair is also marked as "unused for
reference", but the marking of the other field is not changed.

8.2.5.4.3 Assignment process of a LongTermFramel dx to a short-term reference picture
This process is invoked when memory management control operation is equal to 3.

Given the syntax element difference of pic_nums_minusl, the variable picNumX is obtained as specified in subclause
8.2.5.4.1. picNumX shall refer to a frame or complementary reference field pair or non-paired reference field marked as
"used for short-term reference" and not marked as "non-existing".

When LongTermFrameldx equal to long term frame idx is already assigned to a long-term reference frame or a
long-term complementary reference field pair, that frame or complementary field pair and both of its fields are marked
as "unused for reference". When LongTermFrameldx is already assigned to a non-paired reference field, and the field is
not the complementary field of the picture specified by picNumX, that field is marked as “unused for reference”.

Depending on field pic_flag the value of LongTermFrameldx is used to mark a picture from "used for short-term
reference"” to "used for long-term reference" as follows.

— If field pic flag is equal to 0, the marking of the short-term reference frame or short-term complementary
reference field pair specified by picNumX and both of its fields are changed from "used for short-term reference"
to "used for long-term reference" and assigned LongTermFrameldx equal to long_term_frame idx.

— Otherwise (field pic_flag is equal to 1), the marking of the short-term reference field specified by picNumX is
changed from "used for short-term reference" to "used for long-term reference" and assigned LongTermFrameldx
equal to long_term_frame idx. When the field is part of a reference frame or a complementary reference field pair,
and the other field of the same reference frame or complementary reference field pair is also marked as "used for
long-term reference", the reference frame or complementary reference field pair is also marked as "used for
long-term reference" and assigned LongTermFrameldx equal to long_term frame idx.

8.2.5.4.4 Decoding process for MaxL ongTermFramel dx
This process is invoked when memory management control operation is equal to 4.

All pictures for which LongTermFrameldx is greater than max_long_term frame idx_plusl — 1 and that are marked as
"used for long-term reference" are marked as “unused for reference”.

The variable MaxLongTermFrameldx is derived as follows.

— If max_long term frame idx plusl is equal to 0, MaxLongTermFrameldx is set equal to “no long-term frame
indices”.

— Otherwise (max long term frame idx plusl is greater than 0), MaxLongTermFrameldx is set equal to
max_long term frame idx plusl — 1.

NOTE — The memory management control operation command equal to 4 can be used to mark long-term reference pictures as
“unused for reference”. The frequency of transmitting max long term frame idx plusl is not specified by this
Recommendation | International Standard. However, the encoder should send a memory management control operation
command equal to 4 upon receiving an error message, such as an intra refresh request message.

825441 Marking process of all reference pictures as “unused for reference” and setting
MaxL ongTermFrameldx to “no long-term frame indices’

This process is invoked when memory _management_control _operation is equal to 5.

ITU-T Rec. H.264 (11/2007) 121

All reference pictures are marked as “unused for reference” and the variable MaxLongTermFrameldx is set equal to “no
long-term frame indices”.

8.2.5.4.5 Processfor assigning a long-term frameindex to the current picture
This process is invoked when memory management control operation is equal to 6.

When a variable LongTermFrameldx equal to long_term_frame idx is already assigned to a long-term reference frame
or a long-term complementary reference field pair, that frame or complementary field pair and both of its fields are
marked as "unused for reference". When LongTermFrameldx is already assigned to a non-paired reference field, and
the field is not the complementary field of the current picture, that field is marked as “unused for reference”.

The current picture is marked as
long_term_frame idx.

'used for long-term reference" and assigned LongTermFrameldx equal to

When field pic flag is equal to 0, both its fields are also marked as "used for long-term reference" and assigned
LongTermFrameldx equal to long_term_frame idx.

When field pic flag is equal to 1 and the current picture is the second field (in decoding order) of a complementary
reference field pair, and the first field of the complementary reference field pair is also currently marked as "used for
long-term reference), the complementary reference field pair is also marked as "used for long-term reference" and
assigned LongTermFrameldx equal to long_term_frame idx.

After marking the current decoded reference picture, the total number of frames with at least one field marked as “used
for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus
the number of non-paired fields marked as “used for reference” shall not be greater than Max(num_ref frames, 1).

NOTE - Under some circumstances, the above statement may impose a constraint on the order in which a
memory management_control operation syntax element equal to 6 can appear in the decoded reference picture marking syntax
relative to a memory _management_control_operation syntax element equal to 1, 2, or 4.

8.3 Intra prediction process

This process is invoked for I and SI macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process and, for Intra NxN prediction
modes (where NxN is equal to 4x4 or 8x8), the values of IntraNxNPredMode from neighbouring macroblocks.

Outputs of this process are specified as follows.

— If the macroblock prediction mode is Intra_4x4 or Intra_8x8, the outputs are constructed luma samples prior to the
deblocking filter process and (when ChromaArrayType is not equal to 0) chroma prediction samples of the
macroblock predc, where C is equal to Cb and Cr.

— Otherwise, if mb_type is not equal to I PCM, the outputs are luma prediction samples of the macroblock pred; and
(when ChromaArrayType is not equal to 0) chroma prediction samples of the macroblock predc, where C is equal
to Cb and Cr.

— Otherwise (mb_type is equal to I PCM), the outputs are constructed luma and (when ChromaArrayType is not
equal to 0) chroma samples prior to the deblocking filter process.

The variable MvCnt is set equal to 0.
Depending on the value of mb_type the following applies.

— Ifmb type is equal to I PCM, the sample construction process for | PCM macroblocks as specified in subclause
8.3.5 is invoked.

— Otherwise (mb_type is not equal to I PCM), the following applies.
— The decoding processes for Intra prediction modes are described for the luma component as follows.

— If the macroblock prediction mode is equal to Intra_4x4, the Intra_4x4 prediction process for luma
samples as specified in subclause 8.3.1 is invoked.

— Otherwise, if the macroblock prediction mode is equal to Intra_8x8, the Intra_8x8 prediction process as
specified in subclause 8.3.2 is invoked.

— Otherwise (the macroblock prediction mode is equal to Intra_16x16), the Intra 16x16 prediction
process as specified in subclause 8.3.3 is invoked with S', as the input and the outputs are luma
prediction samples of the macroblock pred;.

122 ITU-T Rec. H.264 (03/2005)

— When ChromaArrayType is not equal to 0, the Intra prediction process for chroma samples as specified in
subclause 8.3.4 is invoked with S'cy, and S'c; as the inputs and the outputs are chroma prediction samples of the
macroblock predc, and predc;.

Samples used in the Intra prediction process are the sample values prior to alteration by any deblocking filter operation.

8.3.1 Intra 4x4 prediction processfor luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

Inputs to this process are the values of Intradx4PredMode (if available) or Intra8x8PredMode (if available) from
neighbouring macroblocks or macroblock pairs.

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned
using the 4x4 luma block inverse scanning process as specified in subclause 6.4.3.

For all 4x4 luma blocks of the luma component of a macroblock with luma4x4BlkIdx = 0..15, the derivation process for
the Intra4x4PredMode as specified in subclause 8.3.1.1 is invoked with luma4x4BlkIdx as well as Intra4x4PredMode
and Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the
variable Intra4x4PredMode[luma4x4Blkldx] as the output.

For each luma block of 4x4 samples indexed using luma4x4BlkIdx = 0..15,

1. The Intra 4x4 sample prediction process in subclause 8.3.1.2 is invoked with luma4x4Blkldx and the array S'y
containing constructed luma samples prior to the deblocking filter process from adjacent luma blocks as the inputs
and the outputs are the Intra 4x4 luma prediction samples pred4x4.[x, y] with x, y =0..3.

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current macroblock
is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the
input and the output being assigned to (xO, yO) and x, y =0..3.

pred;[xO + x, yO +y] =preddx4[X, y] (8-41)

3. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
subclause 8.5 is invoked with pred; and luma4x4BIklIdx as the input and the constructed samples for the current
4x4 luma block S’ as the output.

8.3.1.1 Derivation processfor the Intradx4PredM ode

Inputs to this process are the index of the 4x4 luma block luma4x4Blkldx and variable arrays Intra4x4PredMode (if
available) and Intra8x8PredMode (if available) that are previously (in decoding order) derived for adjacent
macroblocks.

Output of this process is the variable Intra4x4PredMode[luma4x4BlkIdx].

Table 8-2 specifies the values for Intradx4PredMode[luma4x4BlkIdx] and the associated names.

Table 8-2 — Specification of I ntradx4PredM ode] lumadx4Blkldx] and associated names

I ntradx4PredM ode] lumadx4Blkidx] Name of Intra4x4PredM ode] lumadx4Blkldx]
0 Intra_4x4 Vertical (prediction mode)
1 Intra_4x4_Horizontal (prediction mode)
2 Intra_4x4 DC (prediction mode)
3 Intra_4x4 Diagonal Down_Left (prediction mode)
4 Intra_4x4_ Diagonal Down_Right (prediction mode)
5 Intra_4x4 Vertical Right (prediction mode)
6 Intra_4x4 Horizontal Down (prediction mode)
7 Intra_4x4 Vertical Left (prediction mode)
8 Intra_4x4 Horizontal Up (prediction mode)

ITU-T Rec. H.264 (11/2007) 123

Intradx4PredMode[luma4x4BlkIdx] labelled 0, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in
Figure 8-1.

v
[N

Figure 8-1—Intra_4x4 prediction mode dir ections (informative)

Intradx4PredMode[luma4x4BlkIdx] is derived as follows.

124

The process specified in subclause 6.4.10.4 is invoked with luma4x4Blkldx given as input and the output is
assigned to mbAddrA, luma4x4BIlkIdxA, mbAddrB, and luma4x4BlkIdxB.

The variable dcPredModePredictedFlag is derived as follows.

If any of the following conditions are true, dcPredModePredictedFlag is set equal to 1

the macroblock with address mbAddrA is not available
the macroblock with address mbAddrB is not available

the macroblock with address mbAddrA is available and coded in Inter prediction mode and
constrained_intra_pred_flag is equal to 1

the macroblock with address mbAddrB is available and coded in Inter prediction mode and
constrained_intra pred flag is equal to 1

Otherwise, dcPredModePredictedFlag is set equal to 0.

For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows.

If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in Intra_4x4
or Intra_8x8 macroblock prediction mode, intraMxMPredModeN is set equal to 2 (Intra_4x4 DC prediction
mode).

Otherwise (dcPredModePredictedFlag is equal to 0 and (the macroblock with address mbAddrN is coded in
Intra_4x4 macroblock prediction mode or the macroblock with address mbAddrN is coded in Intra_8x8
macroblock prediction mode)), the following applies.

If the macroblock with address mbAddrN is coded in Intra 4x4 macroblock mode,
intraMxMPredModeN is set equal to Intradx4PredMode[luma4x4BlkIdxN], where Intra4x4PredMode
is the variable array assigned to the macroblock mbAddrN.

Otherwise (the macroblock with address mbAddrN is coded in Intra 8x8 macroblock mode),
intraMxMPredModeN is set equal to Intra8x8PredMode[luma4x4BlkIdxN >>2 1], where
Intra8x8PredMode is the variable array assigned to the macroblock mbAddrN.

ITU-T Rec. H.264 (03/2005)

— Intra4x4PredMode[luma4x4Blkldx] is derived by applying the following procedure.

predIntra4x4PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra4x4 pred mode_ flag[luma4x4Blkldx |)
Intra4x4PredMode[luma4x4Blkldx | = predIntra4x4PredMode
else (8-42)
if(rem_intradx4 pred mode[luma4x4BIlkldx] < predIntra4x4PredMode)
Intra4x4PredMode[luma4x4BlkIdx | =rem_intra4x4 pred mode[luma4x4BIkIdx]
else
Intra4x4PredMode[luma4x4Blkldx | =rem_intra4x4 pred mode[luma4x4Blkldx]+ 1

8.3.1.2 Intra 4x4 sample prediction

This process is invoked for each 4x4 luma block of a macroblock with prediction mode equal to Intra_4x4 followed by
the transform decoding process and picture construction process prior to deblocking for each 4x4 luma block.

Inputs to this process are
— the index of a 4x4 luma block luma4x4BIkIdx,

— an (PicWidthInSamples;)x(PicHeightInSamples;) array cS; containing constructed luma samples prior to the
deblocking filter process of neighbouring macroblocks.

Output of this process are the prediction samples pred4x4,[x,y], with x, y = 0..3 for the 4x4 luma block with index
luma4x4BIkIdx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4Blkldx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4Blkldx as the input
and the output being assigned to (xO, yO).

The 13 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1.3and x=0..7, y = -1, are derived as follows.

— The luma location (xN, yN) is specified by

xN =x0 + x (8-43)

yN=yO +y (8-44)

— The derivation process for neighbouring locations in subclause 6.4.11 is invoked for luma locations with (xN, yN)
as input and mbAddrN and (xW, yW) as output.

— Eachsample p[x,y | withx=-1,y=-1..3and x=0..7, y =-1 is derived as follows.

— If any of the following conditions is true, the sample p[x, y] is marked as “not available for Intra 4x4
prediction”

— mbAddrN is not available,

— the macroblock mbAddrN is coded in Inter prediction mode and constrained intra pred flag is equal
tol,

— the macroblock mbAddrN has mb_type equal to SI and constrained _intra_pred_flag is equal to 1 and the
current macroblock does not have mb_type equal to SI,

— x is greater than 3 and luma4x4BlklIdx is equal to 3 or 11.

— Otherwise, the sample p[x, y | is marked as “available for Intra_4x4 prediction” and the value of the sample
pl X, y] is derived as follows.

— The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is
assigned to (xM, yM).

— Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[x,y] is
derived as follows.

ITU-T Rec. H.264 (11/2007) 125

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

pl X,y]=cSi[XM +xW,yM +2 * yW] (8-45)

— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),

plX,y]=cS [xM+xW,yM +yW] (8-46)

When samples p[x, -1], with x = 4..7 are marked as “not available for Intra 4x4 prediction,” and the sample p[3, -1]
is marked as “available for Intra 4x4 prediction,” the sample value of p[3, -1] is substituted for sample values
pl x, -1], with x =4..7 and samples p[x, -1], with x = 4..7 are marked as “available for Intra_4x4 prediction”.

NOTE — Each block is assumed to be constructed into a picture array prior to decoding of the next block.

Depending on Intra4x4PredMode[luma4x4Blkldx], one of the Intra 4x4 prediction modes specified in subclauses
8.3.1.2.1 to 8.3.1.2.9 is invoked.

8.3.1.2.1 Specification of Intra_4x4 Vertical prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 0.

This mode shall be used only when the samples p[x,-1] with x = 0..3 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived by

preddx4 [x,y]=p[x, -1], with x, y=10..3 (8-47)

8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 1.

This mode shall be used only when the samples p[-1,y], with y = 0..3 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4; [x, y], with x, y = 0..3 are derived by

pred4x4, [x,y]=p[-1,y], withx,y=0..3 (8-48)

8.3.1.2.3 Specification of Intra 4x4 DC prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BlklIdx] is equal to 2.
The values of the prediction samples pred4x4;[x, y], with x, y = 0..3 are derived as follows.

— If all samples p[x,-1], with x = 0..3 and p[-1,y], with y = 0..3 are marked as ‘“available for Intra 4x4
prediction”, the values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived by

preddx4 [x,y]=(p[0,-1]+p[1,-1]+p[2,-1]+p[3,-1]+
p[-1,O]+p[-1,1]+p[-1,2]+p[-1,3]+4)>>3 (8-49)

— Otherwise, if any samples p[x, -1], with x = 0..3 are marked as “not available for Intra 4x4 prediction” and all
samples p[-1,y], with y = 0..3 are marked as “available for Intra_4x4 prediction”, the values of the prediction
samples pred4x4,[x, y], with x, y = 0..3 are derived by

preddx4 [X,y]=(p[-1,0]+p[-1, 1]+p[-1,2]+p[-1,3]+2)>>2 (8-50)
— Otherwise, if any samples p[-1,y], with y = 0..3 are marked as “not available for Intra_4x4 prediction” and all

samples p[x, -1], with x =0 .. 3 are marked as “available for Intra 4x4 prediction”, the values of the prediction
samples pred4x4, [x, y], with x, y =0 .. 3 are derived by

pred4x4 [X,y] =(p[O0,-1]+p[1,-1]+p[2,-1]+p[3,-1]+2)>>2 (8-51)

126 ITU-T Rec. H.264 (03/2005)

— Otherwise (some samples p[x, -1], with x = 0..3 and some samples p[-1,y], with y = 0..3 are marked as “not
available for Intra_4x4 prediction”), the values of the prediction samples pred4x4.[x,y], with x, y = 0..3 are
derived by

preddx4; [x,y]= (1 <<(BitDepthy — 1)) (8-52)

NOTE — A 4x4 luma block can always be predicted using this mode.
8.3.1.2.4 Specification of Intra_4x4 Diagonal_Down_L eft prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BlklIdx] is equal to 3.

This mode shall be used only when the samples p[x,-1] with x = 0..7 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

— Ifxisequal to 3 and y is equal to 3,

pred4x4 [x,y [=(p[6,-1]+3*p[7,-1]+2)>>2 (8-53)

— Otherwise (x is not equal to 3 or y is not equal to 3),

pred4x4 [x,y] =(p[x+y,-1]+2*p[x+y+1,-1]+p[x+ty+2,-1]+2)>>2 (8-54)

8.3.1.2.5 Spexification of Intra_4x4 Diagonal_Down_Right prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BlklIdx] is equal to 4.

This mode shall be used only when the samples p[x, -1] with x = 0..3 and p[-1,y] with y = -1..3 are marked as
“available for Intra_4x4 prediction”.

The values of the prediction samples pred4x4;[x, y], with x, y = 0..3 are derived as follows.

— Ifxis greater than y,

preddxd [X,y]=(p[x-y-2,-1]+2*p[x-y-1,-1]+p[x-y,-1]+2)>>2 (8-55)

— Otherwise, if x is less than y,

preddx4 [X,y |=(p[-1,y-x-2]+2*p[-1,y-x-1]+p[-l,y-x]+2)>>2 (8-56)

— Otherwise (x is equal to y),

preddx4 [x,y]=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-57)

8.3.1.2.6 Specification of Intra_4x4 Vertical_Right prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BIkldx] is equal to 5.

This mode shall be used only when the samples p[x, -1] with x = 0..3 and p[-1,y] with y = -1..3 are marked as
“available for Intra 4x4 prediction”.

Let the variable zVR be set equal to 2 * x —y.
The values of the prediction samples pred4x4;[x, y], with x, y = 0..3 are derived as follows.

— IfzVRisequalto0, 2,4, or 6,

preddx4 [X,y] =(p[x-(y>>1)-1,-1]+p[x-(y>>1),-1]+1)>>1 (8-58)

— Otherwise, if zZVR is equal to 1, 3, or 5,

preddx4 [X,y] =(p[x-(y>>1)-2,-1]+2*p[x-(y>>1)-1L-1]+p[x-(y>>1),-1]+2)>>2 (8-59)

ITU-T Rec. H.264 (11/2007) 127

Otherwise, if zZVR is equal to -1,

pred4x4 [X,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-60)

Otherwise (zVR is equal to -2 or -3),

pred4x4 [x,y |=(p[-1,y-1]1+2*p[-1,y-2]+p[-1,y-3]+2)>>2 (8-61)

8.3.1.2.7 Specification of Intra_4x4 _Horizontal_Down prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BIkldx] is equal to 6.

This mode shall be used only when the samples p[x, -1] with x = 0..3 and p[-1,y] with y = -1..3 are marked as
“available for Intra 4x4 prediction”.

Let the variable zZHD be set equal to 2 * y —x.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

If zZHD is equal to 0, 2, 4, or 6,

pred4x4 [x,y [=(p[-1,y-(x>>1)-1]+p[-L,y-(x>>1)]+1)>>1 (8-62)

Otherwise, if zZHD is equal to 1, 3, or 5,

preddx4 [X,y]=(p[-1,y-(x>>1)-2]+2*p[-1,y-(x>>1)-1]+p[-1,y-(x>>1)]+2)>>2(8-63)

Otherwise, if zHD is equal to -1,

pred4x4 [X,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-64)

Otherwise (zHD is equal to -2 or -3),

preddx4 [x,y]=(p[x-1,-1]+2*p[x-2,-1]+p[x-3,-1]+2)>>2 (8-65)

8.3.1.2.8 Specification of Intra_4x4 Vertical_L eft prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BIlkldx] is equal to 7.

This mode shall be used only when the samples p[x,-1] with x = 0..7 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4;[x, y], with x, y = 0..3 are derived as follows.

Ifyisequal to 0 or 2,

preddxd [x,y 1= (p[x+(y>>1),-11+p[x+(y>> 1)+ 1,-1]+1)>> 1 (8-66)

Otherwise (y is equal to 1 or 3),

preddx4 [X,y |=(p[x+(y>1),-1]+2*p[x+(y>1)+1,-1]+p[x+(y>1)+2,-1]+2)>>2
(8-67)

8.3.1.2.9 Specification of Intra_4x4 Horizontal_Up prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BIkldx] is equal to 8.

This mode shall be used only when the samples p[-1,y] with y = 0..3 are marked as “available for Intra 4x4
prediction”.

Let the variable zHU be set equal to x + 2 * y.

128

ITU-T Rec. H.264 (03/2005)

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows:

— IfzHU is equal to 0, 2, or 4

preddxd [x,y 1= (p[-Ly+(x>> 1) [+ p[-Ly+(x>>1)+1]+1)>>1 (8-68)

— Otherwise, if zZHU is equal to 1 or 3

predax4 [X,y] =(p[-Ly+(x>>1)]+2*p[-Ly+(x>>1)+1]+p[-l,y+(x>>1)+2]+2)>>2

(8-69)
— Otherwise, if zZHU is equal to 5,
pred4x4r[x,y]=(p[-1,2]+3*p[-1,3]+2)>>2 (8-70)
— Otherwise (zHU is greater than 5),
preddx4 [x,y]=p[-1,3] (8-71)

8.3.2 Intra_8x8 prediction processfor luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_8x8.

Inputs to this process are the values of Intra4x4PredMode (if available) or Intra8x8PredMode (if available) from the
neighbouring macroblocks or macroblock pairs.

Outputs of this process are 8x8 luma sample arrays as part of the 16x16 luma array of prediction samples of the
macroblock pred; .

The luma component of a macroblock consists of 4 blocks of 8x8 luma samples. These blocks are inverse scanned using
the inverse 8x8 luma block scanning process as specified in subclause 6.4.5.

For all 8x8 luma blocks of the luma component of a macroblock with luma8x8BlkIdx = 0..3, the derivation process for
Intra8x8PredMode as specified in subclause 8.3.2.1 is invoked with luma8x8Blkldx as well as Intra4x4PredMode and
Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the
variable Intra8x8PredMode[luma8x8BlkIdx] as the output.

For each luma block of 8x8 samples indexed using luma8x8BlklIdx = 0..3, the following applies.

— The Intra_8x8 sample prediction process in subclause 8.3.2.2 is invoked with luma8x8Blkldx and the array
S'L containing constructed samples prior to the deblocking filter process from adjacent luma blocks as the
input and the output are the Intra_8x8 luma prediction samples pred8x8;[x, y] with x, y =0..7.

— The position of the upper-left sample of an 8x8 luma block with index luma8x8Blkldx inside the current
macroblock is derived by invoking the inverse 8x8 luma block scanning process in subclause 6.4.5 with
luma8x8BlkIdx as the input and the output being assigned to (xO, yO) and x, y =0..7.

pred [xO +x, yO +y] =pred8x8.[X, y] (8-72)

— The transform coefficient decoding process and picture construction process prior to deblocking filter process
in subclause 8.5 is invoked with pred; and luma8x8BIlkldx as the input and the constructed samples for the
current 8x8 luma block S’ as the output.

8.3.21 Derivation processfor Intra8x8PredM ode

Inputs to this process are the index of the 8x8 luma block luma8x8Blkldx and variable arrays Intra4x4PredMode (if
available) and Intra8x8PredMode (if available) that are previously (in decoding order) derived for adjacent
macroblocks.

Output of this process is the variable Intra8x8PredMode[luma8x8BlkIdx].

Table 8-3 specifies the values for Intra8x8PredMode[luma8x8BlkIdx] and the associated mnemonic names.

ITU-T Rec. H.264 (11/2007) 129

Table 8-3 — Specification of Intra8x8PredM ode] luma8x8Blkldx] and associated names

Intra8x8PredM ode] luma8x8Blkldx] Name of Intra8x8PredM ode[luma8x8BIlkldx]
0 Intra_8x8 Vertical (prediction mode)
1 Intra_8x8 Horizontal (prediction mode)
2 Intra_8x8 DC (prediction mode)
3 Intra_8x8 Diagonal Down_Left (prediction mode)
4 Intra_8x8 Diagonal Down_Right (prediction mode)
5 Intra_8x8 Vertical Right (prediction mode)
6 Intra_8x8 Horizontal Down (prediction mode)
7 Intra_8x8 Vertical Left (prediction mode)
8 Intra_8x8 Horizontal Up (prediction mode)

Intra8x8PredMode[luma8x8BlklIdx] is derived as follows.

— The process specified in subclause 6.4.10.2 is invoked with luma8x8Blkldx given as input and the output is
assigned to mbAddrA, luma8x8BlkIdxA, mbAddrB, and luma8x8BlkIdxB.

— The variable dcPredModePredictedFlag is derived as follows.
— If any of the following conditions are true, dcPredModePredictedFlag is set equal to 1

the macroblock with address mbAddrA is not available

— the macroblock with address mbAddrB is not available

the macroblock with address mbAddrA is available and coded in Inter prediction mode and
constrained_intra_pred_flag is equal to 1

the macroblock with address mbAddrB is available and coded in Inter prediction mode and
constrained_intra_pred_flag is equal to 1

— Otherwise, dcPredModePredictedFlag is set equal to 0.
— For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows.

— If dcPredModePredictedFlag is equal to 1 or (the macroblock with address mbAddrN is not coded in
Intra_4x4 macroblock prediction mode and the macroblock with address mbAddrN is not coded in Intra_8x8
macroblock prediction mode), intraMxMPredModeN is set equal to 2 (Intra_8x8 DC prediction mode).

— Otherwise (dcPredModePredictedFlag is equal to 0 and (the macroblock with address mbAddrN is coded in
Intra_4x4 macroblock prediction mode or the macroblock with address mbAddrN is coded in Intra 8x8
macroblock prediction mode)), the following applies.

— If the macroblock with address mbAddrN is coded in Intra 8x8 macroblock mode,
intraMxMPredModeN is set equal to Intra8x8PredMode[luma8x8BIkIdxN], where Intra8x8PredMode
is the variable array assigned to the macroblock mbAddrN.

— Otherwise (the macroblock with address mbAddrN is coded in Intra_4x4 macroblock mode),
intraMxMPredModeN is derived by the following procedure, where Intra4x4PredMode is the variable
array assigned to the macroblock mbAddrN.

intraMxMPredModeN = Intra4x4PredMode[luma8x8BIKIdXN * 4 +n] (8-73)
where the variable n is derived as follows

— If N is equal to A, depending on the variable MbaffFrameFlag, the variable luma8x8BlklIdx, the
current macroblock, and the macroblock mbAddrN, the following applies.

130 ITU-T Rec. H.264 (03/2005)

— If MbaffFrameFlag is equal to 1, the current macroblock is a frame coded macroblock, the
macroblock mbAddrN is a field coded macroblock, and luma8x8BIlkIdx is equal to 2, n is set
equal to 3.

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a field coded
macroblock or the macroblock mbAddrN is a frame coded macroblock or luma8x8BIkIdx is
not equal to 2), n is set equal to 1.

— Otherwise (N is equal to B), n is set equal to 2.

— Finally, given intraMxMPredModeA and intraMxMPredModeB, the variable Intra8x8PredMode[luma8x8BIkIdx]
is derived by applying the following procedure.

predIntra8x8PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra8x8 pred mode flag[luma8x8Blkldx])
Intra8x8PredMode[luma8x8Blkldx | = predIntra8x8PredMode
else (8-74)
if(rem_intra8x8 pred mode[luma8x8Blkldx | < predIntra8x8PredMode)
Intra8x8PredMode[luma8x8BlkIdx] =rem intra8x8 pred mode[luma8x8BlkIdx]
else
Intra8x8PredMode[luma8x8BlkIdx] =rem_intra8x8 pred mode[luma8x8BlkIdx]+ 1

8.3.2.2 Intra _8x8sample prediction

This process is invoked for each 8x8 luma block of a macroblock with prediction mode equal to Intra_8x8 followed by
the transform decoding process and picture construction process prior to deblocking for each 8x8 luma block.

Inputs to this process are
— the index of an 8x8 luma block luma8x8BlkIdx.

— an (PicWidthInSamples;)x(PicHeightInSamples;) array cS; containing constructed luma samples prior to the
deblocking filter process of neighbouring macroblocks.

Output of this process are the prediction samples pred8x8,[x, y], with x, y =0..7 for the 8x8 luma block with index
luma8x8BIkIdx.

The position of the upper-left sample of an 8x8 luma block with index luma8x8BlkIdx inside the current macroblock is
derived by invoking the inverse 8x8 luma block scanning process in subclause 6.4.5 with luma8x8BlkIdx as the input
and the output being assigned to (xO, yO).

The 25 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1..7and x=0..15, y = -1, are derived as follows.

— The luma location (XN, yN) is specified by

xN =x0 + x (8-75)

yN=yO+y (8-76)

— The derivation process for neighbouring locations in subclause 6.4.11 is invoked for luma locations with (XN, yN)
as input and mbAddrN and (xW, yW) as output.

— Eachsample p[x,y] withx=-1,y=-1..7and x =0..15, y = -1 is derived as follows.

— If any of the following conditions is true, the sample p[x, y] is marked as “not available for Intra_8x8
prediction”

— mbAddrN is not available,

— the macroblock mbAddrN is coded in Inter prediction mode and constrained_intra_pred_flag is equal
to1,

— Otherwise, the sample p[x, y] is marked as “available for Intra_8x8 prediction” and the sample value
pl X,y] is derived as follows.

— The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is
assigned to (xM, yM).

ITU-T Rec. H.264 (11/2007) 131

— Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[x, y] is
derived as follows.

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

pl X,y]=cSi[XM +xW,yM +2 * yW] (8-77)

— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),

p[X,y]=cSi[xM +xW, yM + yW] (8-78)

When samples p[x, -1], with x = 8..15 are marked as “not available for Intra_8x8 prediction,” and the sample p[7, -1]
is marked as “available for Intra 8x8 prediction,” the sample value of p[7,-1] is substituted for sample values
pl x, -1], with x = 8..15 and samples p[x, -1], with x = 8..15 are marked as “available for Intra_8x8 prediction”.

NOTE - Each block is assumed to be constructed into a picture array prior to decoding of the next block.

The reference sample filtering process for Intra 8x8 sample prediction in subclause 8.3.2.2.1 is invoked with the
samples p[X,y] withx =-1,y=-1..7 and x =0..15, y = -1 (if available) as input and p'[X, y] withx =-1, y =-1..7 and
x =0..15, y =-1 as output.

Depending on Intra8x8PredMode[luma8x8BlkIdx], one of the Intra 8x8 prediction modes specified in subclauses
8.3.2.2.2t0 8.3.2.2.10 is invoked.

8.3.2.2.1 Reference samplefiltering processfor Intra 8x8 sample prediction

Inputs to this process are the reference samples p[x, y] with x =-1, y=-1..7 and x =0..15, y=-1 (if available) for
Intra_8x8 sample prediction.

Outputs of this process are the filtered reference samples p'[x,y] with x=-1, y=-1..7 and x=0..15, y=-1 for
Intra_8x8 sample prediction.

When all samples p[x, -1] with x =0..7 are marked as “available for Intra_8x8 prediction”, the following applies.
— The value of p'[0, -1] is derived as follows.

— Ifp[-1,-1]is marked as “available for Intra 8x8 prediction”, p'[0, -1] is derived by

PLO,-1]=(p[-1,-11+2%p[0,-1]+ p[1,-1]+2)>>2 (8-79)

— Otherwise (p[-1, -1] is marked as “not available for Intra_8x8 prediction”), p'[0, -1] is derived by

p[0,-11=(3%p[0,-1]+p[1,-1]+2)>>2 (8-80)

— The values of p'[x, -1], with x = 1..7 are derived by

pIx-1]1=(p[x-1,-1]+2*p[x,-1]+p[x+],-1]+2)>>2 (8-81)

When all samples p[x, -1] with x = 7..15 are marked as “available for Intra_8x8 prediction”, the following applies.

— The values of p'[x, -1], with x = 8..14 are derived by

pIx,-1]=(p[x-1,-1]+2*p[x,-1] +p[x+],-1]+2)>>2 (8-82)

- The value of p'[15, -1] is derived by
P15, -1]=(p[14,-1]+3 *p[15,-1]+2)>>2 (8-83)

When the sample p[-1, -1] is marked as “available for Intra 8x8 prediction”, the value of p'[-1, -1] is derived as
follows.

— Ifthe sample p[0, -1] is marked as “not available for Intra_8x8 prediction” or the sample p[-1, 0] is marked
as “not available for Intra_8x8 prediction”, the following applies.

132 ITU-T Rec. H.264 (03/2005)

— Ifthe sample p[0, -1] is marked as “available for Intra 8x8 prediction”, p'[-1, -1] is derived by

pl-1,-11=(3*p[-1,-1]+p[0,-1]+2)>>2 (8-84)

— Otherwise (the sample p[0, -1] is marked as “not available for Intra_8x8 prediction” and the sample p[-1, 0]
is marked as “available for Intra_8x8 prediction”), p'[-1, -1] is derived by

pl-1,-1]=(3*p[-1,-1]+p[-1,0]+2)>>2 (8-85)
— Otherwise (the sample p[0, -1] is marked as “available for Intra_8x8 prediction” and the sample p[-1, 0 | is
marked as “available for Intra_8x8 prediction”), p'[-1, -1] is derived by

p[-1,-11=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-86)

When all samples p[-1, y] with y =0..7 are marked as “available for Intra_8x8 prediction”, the following applies.
— The value of p'[-1, 0] is derived as follows.

— Ifp[-1, -1]is marked as “available for Intra_8x8 prediction”, p'[-1, 0] is derived by

pl-1,0]=(p[-1,-1]+2*p[-1,0]+p[-1,1]+2)>>2 (8-87)

— Otherwise (if p[-1, -1] is marked as “not available for Intra_8x8 prediction”), p'[-1, 0] is derived by

pL-1,0]=(3*p[-1,0]+p[-1,1]+2)>>2 (8-88)

— The values of p[-1, y], with y = 1..6 are derived by

pl-Lyl=(pl-1,y-11+2*p[-1,y]+p[-1,y+1]+2)>>2 (8-89)

— The value of p'[-1, 7] is derived by

pl-1,7]1=(p[-1,6]+3*p[-1,7]+2)>>2 (8-90)

8.3.2.2.2 Specification of Intra_8x8_Vertical prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 0.

This mode shall be used only when the samples p[x,-1] with x=0..7 are marked as “available for Intra 8x8
prediction”.

The values of the prediction samples pred8x8; [x, y], with x, y = 0..7 are derived by

pred8x8, [X,y] =p'[X, -1], with x, y=0..7 (8-91)

8.3.2.2.3 Specification of Intra 8x8 Horizontal prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 1.

This mode shall be used only when the samples p[-1,y], with y=0..7 are marked as “available for Intra 8x8
prediction”.

The values of the prediction samples pred8x8,[x, y], with x, y = 0..7 are derived by

pred8x8 [x,y] =p'[-1,y], withx,y=0..7 (8-92)

8.3.2.2.4 Specification of Intra_8x8 DC prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIlkldx] is equal to 2.

The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows.

ITU-T Rec. H.264 (11/2007) 133

— Ifall samples p[x, -1], with x =0..7 and p[-1, y], with y = 0..7 are marked as “available for Intra_8x8
prediction,” the values of the prediction samples pred8x8,[x, y], with x, y = 0..7 are derived by

predsx8, [x,y]= (ip’[x‘,—l] + ip’[—l, y']+8)>>4 (8-93)
X'=0 y'=0

— Otherwise, if any samples p[x, -1], with x = 0..7 are marked as “not available for Intra_8x8 prediction” and
all samples p[-1, y], with y = 0..7 are marked as “available for Intra_8x8 prediction”, the values of the
prediction samples pred8x8; [x, y |, with x, y = 0..7 are derived by

pred8x8,[x,y]= (27: p'[-1,y'1+4)>>3 (8-94)

y=0

— Otherwise, if any samples p[-1, y], with y = 0..7 are marked as “not available for Intra_8x8 prediction” and
all samples p[x, -1], with x = 0..7 are marked as “available for Intra_8x8 prediction”, the values of the
prediction samples pred8x8; [x, y |, with x, y = 0..7 are derived by

pred8x8, [x,y]= (i p'[X,~1]+4)>>3 (8-95)

xX'=0

— Otherwise (some samples p[x, -1], with x =0..7 and some samples p[-1, y], with y = 0..7 are marked as
“not available for Intra_8x8 prediction”), the values of the prediction samples pred8x8, [x, y], with
X, y = 0..7 are derived by

pred8x8.[x, y] = (1 <<(BitDepthy — 1)) (8-96)

NOTE — An 8x8 luma block can always be predicted using this mode.
8.3.2.2.5 Specification of Intra_8x8 Diagonal_Down_L eft prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 3.

This mode shall be used only when the samples p[x,-1] with x=0..15 are marked as “available for Intra 8x8
prediction”.

The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows.

— Ifxisequal to 7 and y is equal to 7,

pred8x8 [X,y]=(p'[14,-1]1+3 *p[15,-1]+2)>>2 (8-97)

— Otherwise (x is not equal to 7 or y is not equal to 7),

pred8x8.[x,y | =(p'[x+y,-1]+2*p[x+y+ L-1]+p[x+y+2,-1]+2)>>2 (8-98)

8.3.2.2.6 Specification of Intra_8x8 Diagonal_Down_Right prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 4.

This mode shall be used only when the samples p[x, -1] with x=0..7 and p[-1,y] with y=-1..7 are marked as
“available for Intra_8x8 prediction”.

The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows.

— Ifxis greater than y,

pred8x8.[X,y | =(p[x-y-2,-1]+2*p[x-y-1,-1]+p[x-y,-1]+2)>>2 (8-99)

— Otherwise if x is less than y,

pred8x8u[x,y 1= (p[-1y-x-21+2*p[-L,y-x-11+p[-L,y-x]+2)>>2 (8-100)

134 ITU-T Rec. H.264 (03/2005)

— Otherwise (x is equal to y),

pred8x8.[x,y | =(p'[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-101)

8.3.2.2.7 Specification of Intra 8x8 Vertical_Right prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 5.

This mode shall be used only when the samples p[x, -1] with x=0..7 and p[-1,y] with y=-1..7 are marked as
“available for Intra_8x8 prediction”.

Let the variable zVR be set equal to 2 * x —y.
The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows.

- If zVR is equal to 0, 2, 4, 6, 8, 10, 12, or 14

pred8x8.[x,y]=(p[x-(y>>1)-1,-1]+p[x-(y>>1),-1]+1)>>1 (8-102)

- Otherwise, if zZVR is equal to 1, 3, 5, 7,9, 11, or 13

pred8x8i[X,y 1=(p[x-(y>>1)-2,-1]+2*p[x-(y>>1)-1,-1]+p[x-(y>>1),-1]42)>>2 (8-103)

- Otherwise, if zZVR is equal to -1,

pred8x8.[x,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-104)

- Otherwise (zVR is equal to -2, -3, -4, -5, -6, or -7),

pred8x8.[X,y 1= (p[-1,y-2*x-1]+2*p[-1,y-2%x -2]+ p[-1,y-2*%x-3]+2)>>2 (8-105)

8.3.2.2.8 Specification of Intra 8x8 Horizontal _Down prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 6.

This mode shall be used only when the samples p[x, -1] with x=0..7 and p[-1,y] with y=-1..7 are marked as
“available for Intra_8x8 prediction”.

Let the variable zHD be set equal to 2 * y — x.
The values of the prediction samples pred8x8;[x, y], with x, y =0..7 are derived as follows.

- If zHD is equal t0 0, 2, 4, 6, 8, 10, 12, or 14

pred8x8.[X,y |=(p[-1,y(x>>1)-1]+p[-l,y-(x>>1)]+1)>>1 (8-106)

- Otherwise, if zHD is equal to 1, 3,5,7,9, 11, or 13

pred8x8i[x,y1=(p[-1y-(x>>1)-2]+2%p[-Ly-(x>>1)-1]+p[-Ly-(x>>1)]+2)>2 (8107

- Otherwise, if zHD is equal to -1,

pred8x8.[x,y J=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-108)

- Otherwise (zHD is equal to -2, -3, -4, -5, -6, -7),

pred8x8.[X,y 1= (p[x-2*%y-1,-1]+2%p[x-2%y-2,-1]+p[x-2*%y-3,-1]+2)>>2 (8-109)

8.3.2.2.9 Specification of Intra 8x8 Vertical L eft prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 7.

ITU-T Rec. H.264 (11/2007) 135

This mode shall be used only when the samples p[x,-1] with x =0..15 are marked as “available for Intra 8x8
prediction”.

The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows.

- Ifyisequalto0,2,4 or 6

pred8x8 [x,y 1= (p[x+(y>>1),-1 J+p[x+(y>> 1)+ 1,-1]1+1)>> | (8-110)

- Otherwise (y is equal to 1, 3, 5, 7),

pred8x8 [X,y | =(p[x+(y>>1),-1]+2*p[x+(y>1)+ 1 -1]+p[x+(y>1)+2,-1]+2)>>2 (8-111)

8.3.2.2.10 Specification of Intra_8x8 Horizontal Up prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 8.

This mode shall be used only when the samples p[-1,y] with y=0..7 are marked as “available for Intra 8x8
prediction”.

Let the variable zZHU be set equal to x + 2 * y.
The values of the prediction samples pred8x8,[x, y], with x, y =0..7 are derived as follows:

- If zHU is equal to 0, 2, 4, 6, 8, 10, or 12

pred8x8 [x, y 1= (p[-Ly+(x>> 1) +p[-Ly+(x>>1)+1]+1)>>1 (8-112)

- Otherwise, if zHU is equal to 1, 3,5,7,9, or 11

pred8x8i[x,y1=(p[-I,y+(x>> 1)]+2*p[-L,y+(x>> 1)+ 1 [+p[-l,y+(x>>1)+2]+2)>>2 (&113)

- Otherwise, if zZHU is equal to 13,

pred8x8 [X,y |=(p[-1,6]+3 *p[-1,7]+2)>>2 (8-114)

- Otherwise (zZHU is greater than 13),

pred8x8.[x,y]1=p[-1,7] (8-115)

8.3.3 Intra_16x16 prediction processfor luma samples

This process is invoked when the macroblock prediction mode is equal to Intra 16x16. It specifies how the Intra
prediction luma samples for the current macroblock are derived.

Input to this process is a (PicWidthInSamples;)x(PicHeightiInSamples;) array ¢S; containing constructed luma samples
prior to the deblocking filter process of neighbouring macroblocks

Outputs of this process are Intra prediction luma samples for the current macroblock pred; [x, y].

The 33 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1..15 and with x = 0..15, y = -1, are derived as follows.

— The derivation process for neighbouring locations in subclause 6.4.11 is invoked for luma locations with (X,y)
assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

— Eachsample p[X,y] withx =-1, y =-1..15 and with x = 0..15, y = -1 is derived as follows.

— If any of the following conditions is true, the sample p[x, y | is marked as “not available for Intra 16x16
prediction”

— mbAddrN is not available,

— the macroblock mbAddrN is coded in Inter prediction mode and constrained intra pred flag is equal
to 1.

— the macroblock mbAddrN has mb_type equal to SI and constrained intra_pred flag is equal to 1.

136 ITU-T Rec. H.264 (03/2005)

— Otherwise, the sample p[x,y] is marked as “available for Intra 16x16 prediction” and the value of the
sample p[x, y] is derived as follows.

— The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is
assigned to (xM, yM).

— Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[X,y] is
derived as follows.

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

plx,y]=cSi[xM+xW,yM +2* yW] (8-116)

— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),

pl X,y]=cSi[xM +xW, yM +yW] (8-117)

Let pred; [x, y] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samples.

Intra_16x16 prediction modes are specified in Table 8-4.

Table 8-4 — Specification of Intral6x16PredM ode and associated names

Intral6x16PredMode Name of Intral6x16PredM ode
0 Intra_16x16_Vertical (prediction mode)
1 Intra_16x16_Horizontal (prediction mode)
2 Intra_16x16_DC (prediction mode)
3 Intra_16x16_Plane (prediction mode)

Depending on Intral6x16PredMode, one of the Intra_16x16 prediction modes specified in subclauses 8.3.3.1 to 8.3.3.4
is invoked.

8.3.3.1 Specification of Intra_16x16 Vertical prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, -1] with x = 0..15 are marked as “available
for Intra_16x16 prediction”.

predi[X,y]=p[x, -1], with x, y=0..15 (8-118)

8.3.3.2 Specification of Intra_16x16 Horizontal prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[-1, y] with y = 0..15 are marked as “available
for Intra_16x16 prediction”.

pred [X,y]=p[-1,y], withx, y=0..15 (8-119)

8.3.3.3 Specification of Intra_16x16 _DC prediction mode

This Intra_16x16 prediction mode operates, depending on whether the neighbouring samples are marked as “available
for Intra_16x16 prediction”, as follows.

— If all neighbouring samples p[x, -1], with x = 0..15 and p[-1, y], with y = 0..15 are marked as “available for
Intra 16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15 15

predi[%,y 1= (3 plx'~1]+ > p[-1.y]+16) >> 5. with x,y =0..15 (8-120)

x'=0 y'=0

ITU-T Rec. H.264 (11/2007) 137

Otherwise, if any of the neighbouring samples p[x,-1], with x = 0..15 are marked as "not available for
Intra_16x16 prediction" and all of the neighbouring samples p[-1, y], with y = 0..15 are marked as “available for
Intra_16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15 .
predi [X,y] = (Zp[—l,y’]+ 8) >> 4, with x, y =0..15 (8-121)
y'=0

Otherwise, if any of the neighbouring samples p[-1,y], with y = 0..15 are marked as "not available for
Intra_16x16 prediction" and all of the neighbouring samples p[x, -1], with x = 0..15 are marked as “available for
Intra_16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15 .
predi[X,y I= (3 p[x',~1]+8) >> 4, with x, y = 0..15 (8-122)

x'=0

Otherwise (some of the neighbouring samples p[x, -1], with x = 0..15 and some of the neighbouring samples
pl -1,y], with y = 0..15 are marked as “not available for Intra_16x16 prediction”), the prediction for all luma
samples in the macroblock is given by:

predi[X,y]=(1 <<(BitDepthy — 1)), with x, y =0..15 (8-123)

8.3.34 Specification of Intra_16x16_Plane prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, -1] with x = -1..15 and p[-1, y | with
y =0..15 are marked as “available for Intra_16x16 prediction”.

pred [X,y]=Cliply((a+b*(x-7)+c*(y-7)+16)>>5),withx,y=0..15, (8-124)
where:

a=16*(p[-1,15]+p[15,-1]) (8-125)

b=(5*H+32)>>6 (8-126)

c=(5*V+32)>>6 (8-127)

and H and V are specified in Equations 8-128 and 8-129.

834

H=Y (el (pl84x,-1]-p[6-x,-1]) (8-128)
V=i(y’+1)*<p[-1,8+y']-p[-1,6-y']> (8-129)

Intra prediction processfor chroma samples

This process is invoked for I and SI macroblock types. It specifies how the Intra prediction chroma samples for the
current macroblock are derived.

Inputs to this process are two (PicWidthInSamplesc)x(PicHeightinSamplesc) arrays c¢Sc, and c¢Sc, containing
constructed chroma samples prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction chroma samples for the current macroblock predcy[X, y] and prede,[X, y 1.

138

ITU-T Rec. H.264 (03/2005)

Depending on the value of ChromaArrayType, the following applies.

If ChromaArrayType is equal to 3, the Intra prediction chroma samples for the current macroblock predcy| X, y]
and pred¢,[X, y] are derived using the Intra prediction process for chroma samples with ChromaArrayType equal
to 3 as specified in subclause 8.3.4.5.

Otherwise (ChromaArrayType is equal to 1 or 2), the following text specifies the Intra prediction chroma samples
for the current macroblock predcp[X, y] and prede[x, v |.

Both chroma blocks (Cb and Cr) of the macroblock use the same prediction mode. The prediction mode is applied to
each of the chroma blocks separately. The process specified in this subclause is invoked for each chroma block. In the
remainder of this subclause, chroma block refers to one of the two chroma blocks and the subscript C is used as a
replacement of the subscript Cb or Cr.

The neighbouring samples p[X, y] that are constructed chroma samples prior to the deblocking filter process, with
x =-1, y=-1..MbHeightC - 1 and with x =0.MbWidthC - 1, y = -1, are derived as follows.

The derivation process for neighbouring locations in subclause 6.4.11 is invoked for chroma locations with (x,y)
assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

Each sample p[x, y] is derived as follows.

— If any of the following conditions is true, the sample p[x, y] is marked as “not available for Intra chroma
prediction”

— mbAddrN is not available,

— the macroblock mbAddrN is coded in Inter prediction mode and constrained intra pred flag is equal
tol,

— the macroblock mbAddrN has mb_type equal to SI and constrained intra_pred_flag is equal to 1 and the
current macroblock does not have mb_type equal to SI.

— Otherwise, the sample p[x,y] is marked as “available for Intra chroma prediction” and the value of the
sample p[x, y | is derived as follows.

— The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is
assigned to (xL, yL).

— The location (xM, yM) of the upper-left chroma sample of the macroblock mbAddr is derived by
xM = (xL>>4)* MbWidthC (8-130)
yM = ((yL >> 4)* MbHeightC)+ (yL % 2) (8-131)

— Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value p[X,y] is
derived as follows.

— If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

plx,y]1=cSc[xM +xW, yM +2* yW] (8-132)

— Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),

pl X,y] =cSc[xM +xW, yM + yW] (8-133)

Let predc[x, y] with x =0..MbWidthC - 1, y = 0..MbHeightC - 1 denote the prediction samples for the chroma block
samples.

Intra chroma prediction modes are specified in Table 8-5.

ITU-T Rec. H.264 (11/2007) 139

Table 8-5— Specification of Intra chroma prediction modes and associated names

intra_chroma_pred_mode Name of intra_chroma_pred_mode
0 Intra_Chroma_DC (prediction mode)
1 Intra_Chroma_Horizontal (prediction mode)
2 Intra_Chroma_Vertical (prediction mode)
3 Intra_Chroma_Plane (prediction mode)

Depending on intra_chroma pred mode, one of the Intra chroma prediction modes specified in subclauses 8.3.4.1
to 8.3.4.4 is invoked.

8.3.4.1 Specification of Intra_Chroma_DC prediction mode

This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 0.

For each chroma block of 4x4 samples indexed by chroma4x4Blkldx = 0..(1 << (ChromaArrayType +1))—1, the
following applies.

— The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx is derived as

x0 = InverseRasterScan(chroma4x4BIklIdx, 4, 4, 8, 0) (8-134)

yO = InverseRasterScan(chroma4x4Blkldx, 4,4, 8, 1) (8-135)

— Depending on the values of xO and yO, the following applies.

— If (x0O, yO) is equal to(0, 0) or xO and yO are greater than 0, the values of the prediction samples
predc[x + xO, y + yO] with x, y = 0..3 are derived as follows.

If all samples p[x + xO, -1], with x =0..3 and p[-1, y +yO], with y = 0..3 are marked as “available for
Intra chroma prediction”, the values of the prediction samples pred¢c[x + xO, y + yO], with x, y = 0..3 are
derived as

3 3
pred . [x+x0,y+yO]= (> plx+x0,-1]+ > p[-1, y+yOl+ 4J >>3 withx,y=0..3. (8-136)
x'=0 y'=0

Otherwise, if any samples p[x + xO, -1], with x =0..3 are marked as “not available for Intra chroma
prediction” and all samples p[-1,y +yO], with y=0..3 are marked as “available for Intra chroma
prediction”, the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

y'=0

3
pred.[x+x0,y+yO] =(Zp[—l, y‘+yO]+2J >>2, withx, y=0.3. (8-137)

Otherwise, if any samples p[-1,y +yO], with y = 0..3 are marked as “not available for Intra chroma
prediction” and all samples p[x +x0O, -1], with x =0..3 are marked as “available for Intra chroma
prediction”, the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x+xO,y+ yO]:(Zp[x’+xO,—l]+2j >>2, withx,y=0..3. (8-138)

x'=0

Otherwise (some samples p[x + xO, -1], with x = 0..3 and some samples p[-1, y +yO], with y =0..3 are
marked as “not available for Intra chroma prediction”), the values of the prediction samples
predc[x + xO, y + yO], with x, y = 0..3 are derived as

predc[x + %O,y +yO] = (1 << (BitDepthc — 1)), with x, y =0..3. (8-139)

140 ITU-T Rec. H.264 (03/2005)

— Otherwise, if xO is greater than0 and yO is equal to 0, the values of the prediction samples
predc[x + X0, y + yO] with x, y = 0..3 are derived as follows.

— If all samples p[x +xO, -1], with x=0..3 are marked as “available for Intra chroma prediction”, the
values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x+xO,y+ yO]=(Zp[x’+xO,—1]+2) >>2, withx, y=0..3. (8-140)

x'=0

— Otherwise, if all samples p[-1,y+yO], with y=0.3 are marked as “available for Intra chroma
prediction”, the values of the prediction samples pred¢[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x+xO,y+ yO]z(Zp[—l, y'+yO]+2J >>2, withx, y=0..3. (8-141)

y'=0

— Otherwise (some samples p[x + x0O, -1], with x =0..3 and some samples p[-1, y +yO], with y =0..3 are
marked as “not available for Intra chroma prediction”), the values of the prediction samples
predc[x + x0O, y + yO], with x, y = 0..3 are derived as

predc[x +x0, y + yO] = (1 << (BitDepthc — 1)), with x, y = 0..3. (8-142)

— Otherwise (xO is equal to0 and yO is greater than0), the values of the prediction samples
predc[x + X0, y + yO] with x, y = 0..3 are derived as follows.

— If all samples p[-1,y +yO], with y=0..3 are marked as “available for Intra chroma prediction”, the
values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x+xO0,y+ yO]:[Zp[—l, y‘+yO]+2J >>2 withx, y=0.3. (8-143)

y'=0

— Otherwise, if all samples p[x+xO,-1], with x=0..3 are marked as “available for Intra chroma
prediction”, the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x+x0,y+yO]= (Zp[x’+x0,—1] + ZJ >>2 , withx, y=0..3. (8-144)

x'=0

— Otherwise (some samples p[x + xO, -1], with x = 0..3 and some samples p[-1, y +yO], with y = 0..3 are
marked as “not available for Intra chroma prediction”), the values of the prediction samples
predc[x + x0O, y + yO], with x, y = 0..3 are derived as

predc[x +x0, y + yO] = (1 << (BitDepthc — 1)), with x, y = 0..3. (8-145)

8.3.4.2 Specification of Intra_Chroma_Horizontal prediction mode
This Intra chroma prediction mode is invoked when intra_chroma_pred mode is equal to 1.

This mode shall be used only when the samples p[-1, y] with y = 0..MbHeightC - 1 are marked as "available for Intra
chroma prediction".

The values of the prediction samples predc[x, y] are derived as follows.

predc[x, y 1=p[-1, y], with x = 0..MbWidthC - 1 and y = 0..MbHeightC - 1 (8-146)

8.3.4.3 Specification of Intra_Chroma_Vertical prediction mode
This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 2.

This mode shall be used only when the samples p[x, -1] with x = 0..MbWidthC - 1 are marked as "available for Intra
chroma prediction".

ITU-T Rec. H.264 (11/2007) 141

The values of the prediction samples predc[x, y] are derived as follows.

predc[X,y 1=pl x, -1], with x = 0..MbWidthC - 1 and y = 0..MbHeightC - 1 (8-147)

8.3.4.4 Specification of Intra_Chroma_Plane prediction mode
This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 3.

This mode shall be used only when the samples p[x,-1], with x = 0.MbWidthC-1 and p[-1,y], with
y = -1..MbHeightC - 1 are marked as "available for Intra chroma prediction".

The values of the prediction samples predc[X, y] are derived as follows.

Let the variable XxCF be set equal to4 * (ChromaArrayType == 3) and let the variable yCF be set equal
to 4 * (ChromaArrayType != 1).

predc[X,y]=Cliple((a+b*(x-3-xCF)+c*(y-3—-yCF)+16)>>5),

with x = 0..MbWidthC - 1 and y = 0..MbHeightC - 1 (8-148)

where:
a=16 * (p[-1, MbHeightC - 1] + p[MbWidthC - 1,-11]) (8-149)
b=((34-29 * (ChromaArrayType ==3))*H+32)>>6 (8-150)
c=((34-29 * (ChromaArrayType != 1))*V+32)>>6 (8-151)

and H and V are specified as

3+xCF

H= Y (x"+1)*(p[4+xCF+x',—1]-p[2+xCF-x',-1)) (8-152)
x'=0
3+yCF

V= > (y+)*(p[-1,4+yCF+y']-p[-1,2+yCF-y']) (8-153)
y'=0

8.3.4.5 Intraprediction for chroma sampleswith ChromaArrayType equal to 3

This process is invoked when ChromaArrayType is equal to 3. This process is invoked for I and SI macroblock types. It
specifies how the Intra prediction chroma samples for the current macroblock are derived when ChromaArrayType is
equal to 3.

Inputs to this process are constructed samples prior to the deblocking filter process from neighbouring Cb and Cr blocks
and for Intra NxN (where NxN is equal to 4x4 or 8x8) prediction mode, the associated values of IntraNxNPredMode
from neighbouring macroblocks.

Outputs of this process are the Intra prediction samples of the Cb and Cr components of the macroblock or in case of
the Intra NxN prediction process, the outputs are NxN Cb sample arrays as part of the 16x16 Cb array of prediction
samples of the macroblock, and NxN Cb sample arrays as part of the 16x16 Cb array of prediction samples of the
macroblock.

Each Cb, Cr, and luma block with the same block index of the macroblock use the same prediction mode. The
prediction mode is applied to each of the Cb and Cr blocks separately. The process specified in this subclause is
invoked for each Cb and Cr block.

Depending on the macroblock prediction mode, the following applies.
— If the macroblock prediction mode is equal to Intra_4x4, the following applies.

— The same process described in subclause 8.3.1 is also applied to Cb or Cr samples, substituting luma with Cb or
Cr, substituting luma4x4Blkldx with cb4x4Blkldx or cr4x4Blkldx, substituting pred4x4; with pred4x4c, or
pred4x4,, and substituting BitDepthy with BitDepthc.

142 ITU-T Rec. H.264 (03/2005)

— The output variable Intra4x4PredMode[luma4x4BlklIdx] from the process described in subclause 8.3.1.1 is also
used for the 4x4 Cb or 4x4 Cr blocks with index luma4x4BlkIdx equal to index cb4x4BIklIdx or cr4x4BlkIdx.

— The process to derive prediction Cb or Cr samples is identical to the process described in subclause 8.3.1.2 and
its subsequent subclauses when substituting luma with Cb or Cr, substituting pred4x4; with pred4x4c, or
pred4x4c,, and substituting BitDepthy with BitDepthc.

— Otherwise, if the macroblock prediction mode is equal to Intra_8x8, the following applies.

— The same process described in subclause 8.3.2 is also applied to Cb or Cr samples, substituting luma with Cb or
Cr, substituting luma8x8Blkldx with cb8x8BlkIdx or cr8x8Blkldx, substituting pred8x8; with pred8x8c, or
pred8x8c;, and substituting BitDepthy with BitDepthc.

— The output variable Intra8x8PredMode[luma8x8BlkIdx] from the process described in subclause 8.3.2.1 is used
for the 8x8 Cb or 8x8 Cr blocks with index luma8x8Blkldx equal to index cb8x8BlkIdx or cr8x8BlkIdx.

— The process to derive prediction Cb or Cr samples is identical to the process described in subclause 8.3.2.2 and
its subsequent subclauses when substituting luma with Cb or Cr, substituting pred8x8, with pred8x8¢, or
pred8x8¢;, and substituting BitDepthy with BitDepthc.

— Otherwise, if the macroblock prediction mode is equal to Intra_16x16, the following applies.

— The same process described in subclause 8.3.3 and in the subsequent subclause 8.3.3.1 to 8.3.3.4 is also applied
to Cb or Cr samples, substituting luma with Cb or Cr, substituting pred; with predcy, or predc,, and substituting
BitDepthy with BitDepthc.

8.3.5 Sampleconstruction processfor | _PCM macroblocks

This process is invoked when mb_type is equal to I PCM.

The variable dy is derived as follows.

— If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock, dy is set equal to 2.

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock), dy is set equal to 1.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

The constructed luma samples prior to the deblocking process are generated as specified by:

for(i=0;1<256;it+)
SLUUxP+(i%16),yP+dy*(i/16))]=pcm_sample luma[i] (8-154)

When ChromaArrayType is not equal to 0, the constructed chroma samples prior to the deblocking process are
generated as specified by:

for(i=0; 1 <MbWidthC * MbHeightC; i++) {
S'cp[(xP / SubWidthC) + (i % MbWidthC),
((yP + SubHeightC — 1)/ SubHeightC) + dy * (1/ MbWidthC)] =
pcm_sample chroma] i] (8-155)
S'e:[(xP / SubWidthC) + (1 % MbWidthC),
((yP + SubHeightC — 1)/ SubHeightC) + dy * (1/ MbWidthC)] =
pecm_sample chroma[i + MbWidthC * MbHeightC]

8.4 Inter prediction process
This process is invoked when decoding P and B macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array pred; of luma
samples and when ChromaArrayType is not equal to 0 two (MbWidthC)x(MbHeightC) arrays predc, and predc; of
chroma samples, one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartldx. When
the macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be
further partitioned into sub-macroblock partitions as specified by sub_ mb type. Each sub-macroblock partition is

ITU-T Rec. H.264 (11/2007) 143

referred to by subMbPartldx. When the macroblock partitioning does not consist of sub-macroblocks, subMbPartldx is
set equal to 0.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width
and height of macroblock partitions and sub-macroblock partitions are specified in Table 7-13, 7-14, 7-17, and 7-18.

The range of the macroblock partition index mbPartldx is derived as follows.
— Ifmb_type is equal to B_Skip or B_Direct 16x16, mbPartldx proceeds over values 0..3.

— Otherwise (mb_type is not equal to B _Skip or B Direct 16x16), mbPartldx proceeds over values
0..NumMbPart(mb_type) — 1.

For each value of mbPartldx, the variables partWidth and partHeight for each macroblock partition or sub-macroblock
partition in the macroblock are derived as follows.

— Ifmb_type is not equal to P_8x8, P_8x8ref0, B_Skip, B Direct 16x16, or B_8x8, subMbPartldx is set equal to 0,
and partWidth and partHeight are derived as

partWidth = MbPartWidth(mb_type) (8-156)

partHeight = MbPartHeight(mb_type) (8-157)

— Otherwise, if mb type is equal to P 8x8 or P 8x8refd, or mb type is equal to B 8x8 and
sub mb_type[mbPartldx] is not equal to B Direct 8x8, subMbPartldx proceeds over values
0.NumSubMbPart(sub_mb_type) — 1, and partWidth and partHeight are derived as

partWidth = SubMbPartWidth(sub_mb_type[mbPartldx]) (8-158)

partHeight = SubMbPartHeight(sub_mb_type[mbPartldx]). (8-159)

— Otherwise (mb_type is equal to B _Skip or B Direct 16x16, or mb _type is equal to B_8x8 and
sub_mb_type[mbPartldx] is equal to B_Direct 8x8), subMbPartldx proceeds over values 0..3, and partWidth and
partHeight are derived as

partWidth = 4 (8-160)

partHeight = 4 (8-161)

When ChromaArrayType is not equal to 0, the variables partWidthC and partHeightC are derived as

partWidthC = partWidth / SubWidthC (8-162)
partHeightC = partHeight / SubHeightC (8-163)

Let the variable MvCnt be initially set equal to 0 before any invocation of subclause 8.4.1 for the macroblock.

The Inter prediction process for a macroblock partition mbPartldx and a sub-macroblock partition subMbPartldx
consists of the following ordered steps

1. Derivation process for motion vector components and reference indices as specified in subclause 8.4.1.
Inputs to this process are
— amacroblock partition mbPartldx,
— asub-macroblock partition subMbPartIdx.
Outputs of this process are

— luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion
vectors mvCLO and mvCL1,

144 ITU-T Rec. H.264 (03/2005)

— reference indices refldxL0 and refldxL1,
— prediction list utilization flags predFlaglL0 and predFlagL1,
— the sub-macroblock partition motion vector count subMvCnt.
2. The variable MvCant is incremented by subMvCnt.
3. Derivation process for prediction weights as specified in subclause 8.4.3.
Inputs to this process are
— reference indices refldxL0 and refldxL1,
— prediction list utilization flags predFlaglL.0 and predFlagL1.
Outputs of this process are

— variables for weighted prediction logWD¢, wWoc, Wic, 0oc, 01c With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

4. Decoding process for Inter prediction samples as specified in subclause 8.4.2.
Inputs to this process are
— amacroblock partition mbPartldx,
— asub-macroblock partition subMbPartldx,

— variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available), and partHeightC (if available),

— luma motion vectors mvLO and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion
vectors mvCLO0O and mvCL]1,

— reference indices refldxL0 and refldxL1,
— prediction list utilization flags predFlagl.0 and predFlagl1,

— variables for weighted prediction logWD¢, Woc, Wic, Ogc, 0;c With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are

— inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPart, of prediction luma
samples and when ChromaArrayType is not equal to 0 two (partWidthC)x(partHeightC) arrays predPartc,,
and predParty, of prediction chroma samples, one for each of the chroma components Cb and Cer.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

MvLO[mbPartldx][subMbPartldx] = mvLO0 (8-164)
MvLI1[mbPartldx][subMbPartldx] = mvL1 (8-165)
RefldxLO[mbPartldx] = refldxLO (8-166)
RefldxL1[mbPartldx] = refldxL1 (8-167)
PredFlagl O] mbPartldx] = predFlagL.0 (8-168)
PredFlagl.1[mbPartldx | = predFlagL1 (8-169)

The location of the upper-left sample of the partition relative to the upper-left sample of the macroblock is derived by
invoking the inverse macroblock partition scanning process as described in subclause 6.4.2.1 with mbPartldx as the
input and (xP, yP) as the output.

ITU-T Rec. H.264 (11/2007) 145

The location of the upper-left sample of the macroblock sub-partition relative to the upper-left sample of the
macroblock partition is derived by invoking the inverse sub-macroblock partition scanning process as described in
subclause 6.4.2.2 with subMbPartldx as the input and (xS, yS) as the output.

The macroblock prediction is formed by placing the partition or sub-macroblock partition prediction samples in their
correct relative positions in the macroblock, as follows.

The variable pred; [xP + xS +x, yP +yS +y] with x =0 .. partWidth — 1, y = 0 .. partHeight — 1 is derived by

pred [xP +xS +x, yP +yS +y] = predPart; [x, y] (8-170)

When ChromaArrayType is not equal to 0, the variable predc with x = 0..partWidthC — 1, y = 0..partHeightC — 1, and C
in predc and predPartc being replaced by Cb or Cr is derived by

predc[xP / SubWidthC + xS / SubWidthC + x, yP / SubHeightC + yS / SubHeightC + y] = predPartc[x, y]
(8-171)

8.4.1 Derivation processfor motion vector components and reference indices

Inputs to this process are

a macroblock partition mbPartldx,
a sub-macroblock partition subMbPartldx.

Outputs of this process are

luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion vectors
mvCLO and mvCL1,

reference indices refldxL0 and refldxL1,
prediction list utilization flags predFlagl.0 and predFlagL1,

a sub-partition macroblock motion vector count variable subMvCnt.

For the derivation of the variables mvL0 and mvL1 as well as refldxL0 and refldxL1, the following applies.

If mb_type is equal to P_Skip, the derivation process for luma motion vectors for skipped macroblocks in P and SP
slices in subclause 8.4.1.1 is invoked with the output being the luma motion vectors mvLO and reference indices
refldxL0, and predFlagL0 is set equal to 1. mvL1 and refldxL1 are marked as not available and predFlagL1 is set
equal to 0. The sub-partition motion vector count variable subMvCant is set equal to 1.

Otherwise, if mb type is equal to B_Skip or B Direct 16x16 or sub _mb type[mbPartldx | is equal to
B_Direct_8x8, the derivation process for luma motion vectors for B_Skip, B Direct 16x16, and B_Direct 8x8 in B
slices in subclause 8.4.1.2 is invoked with mbPartldx and subMbPartldx as the input and the output being the luma
motion vectors mvL0, mvL1, the reference indices refldxL0, refldxL1, the sub-partition motion vector count
subMvChnt, and the prediction utilization flags predFlagl.0 and predFlagL1.

Otherwise, for X being replaced by either 0 or 1 in the variables predFlagL X, mvLX, refldxLX, and in Pred LX and
in the syntax elements ref idx 1X and mvd X, the following applies.

1. The variables refldxL.X and predFlaglL.X are derived as follows.

—If MbPartPredMode(mb_type, mbPartldx) or SubMbPredMode(sub_mb_type[mbPartldx]) is equal to
Pred LX or to BiPred,

refldxLX = ref idx 1X[mbPartldx] (8-172)

predFlagLX =1 (8-173)

— Otherwise, the variables refldxLX and predFlagl.X are specified by

refldxLX = -1 (8-174)

predFlagLX =0 (8-175)

2. The variable subMvCnt for sub-partition motion vector count is set equal to predFlagL.0 + predFlagL1.

146 ITU-T Rec. H.264 (03/2005)

3. The variable currSubMbType is derived as follows.
— If the macroblock type is equal to B_8x8, currSubMbType is set equal to sub_mb_type[mbPartldx].
— Otherwise (the macroblock type is not equal to B_8x8), currSubMbType is set equal to "na".

4. When predFlagl.X is equal to 1, the derivation process for luma motion vector prediction in subclause 8.4.1.3 is
invoked with mbPartldx subMbPartldx, refldxLX, and currSubMbType as the inputs and the output being
mvpLX. The luma motion vectors are derived by

mvLX[0]=mvpLX[0]+ mvd_IX[mbPartldx][subMbPartldx][O] (8-176)

mvLX[1]=mvpLX[1]+ mvd_IX[mbPartldx][subMbPartldx][1] (8-177)

When ChromaArrayType is not equal to 0 and predFlagLX (with X being either O or 1) is equal to 1, the derivation
process for chroma motion vectors in subclause 8.4.1.4 is invoked with mvLX and refldxLLX as input and the output
being mvCLX.

8.4.1.1 Derivation processfor luma motion vectorsfor skipped macroblocksin P and SP slices
This process is invoked when mb_type is equal to P_Skip.
Outputs of this process are the motion vector mvL0 and the reference index refldxLO0.

The reference index refldxLO0 for a skipped macroblock is derived as follows.

refldxL.0 = 0. (8-178)

For the derivation of the motion vector mvL0 of a P_Skip macroblock type, the following applies.

— The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx set equal to 0, subMbPartldx set equal to 0,
currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output is assigned to mbAddrA,
mbAddrB, mvLOA, mvLOB, refldxLOA, and refldxLOB.

— The variable mvLO is specified as follows.
— If any of the following conditions are true, both components of the motion vector mvLO are set equal to 0.
— mbAddrA is not available
— mbAddrB is not available
— refldxLOA is equal to 0 and both components of mvLOA are equal to 0
— refldxLOB is equal to 0 and both components of mvLOB are equal to 0

— Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is invoked
with mbPartldx =0, subMbPartldx =0, refldxL0, and currSubMbType = "na" as inputs and the output is
assigned to mvLO0.

NOTE — The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

8.4.1.2 Derivation processfor luma motion vectorsfor B_Skip, B_Direct_16x16, and B_Direct_8x8

This process is invoked when mb_type is equal to B_Skip or B_Direct _16x16, or sub_mb_type[mbPartldx]| is equal to
B_Direct 8x8.

Inputs to this process are mbPartldx and subMbPartIdx.

Outputs of this process are the reference indices refldxL0, refldxL1, the motion vectors mvLO and mvLl, the
sub-partition motion vector count subMvCnt, and the prediction list utilization flags, predFlaglL.0 and predFlagL1.

The derivation process depends on the value of direct spatial mv_pred flag, which is present in the bitstream in the
slice header syntax as specified in subclause 7.3.3, and is specified as follows.

— If direct_spatial mv_pred flag is equal to 1, the mode in which the outputs of this process are derived is referred
to as spatial direct prediction mode.

— Otherwise (direct spatial mv_pred flag is equal to 0), mode in which the outputs of this process are derived is
referred to as temporal direct prediction mode.

ITU-T Rec. H.264 (11/2007) 147

Both spatial and temporal direct prediction mode use the co-located motion vectors and reference indices as specified in
subclause 8.4.1.2.1.

The motion vectors and reference indices are derived as follows.

— If spatial direct prediction mode is used, the direct motion vector and reference index prediction mode specified in
subclause 8.4.1.2.2 is used, with subMvCnt being an output.

— Otherwise (temporal direct prediction mode is used), the direct motion vector and reference index prediction mode
specified in subclause 8.4.1.2.3 is used and the variable subMvCnt is derived as follows.

— If subMbPartldx is equal to 0, subMvCnt is set equal to 2.
— Otherwise (subMbPartldx is not equal to 0), subMvChnt is set equal to 0.

8.4.1.2.1 Derivation processfor the co-located 4x4 sub-macroblock partitions
Inputs to this process are mbPartldx and subMbPartIdx.

Outputs of this process are the picture colPic, the co-located macroblock mbAddrCol, the motion vector mvCol, the
reference index refldxCol, and the variable vertMvScale (which can be One To One, Frm To Fld or FId To Frm).

When RefPicListl[0] is a frame or a complementary field pair, let firstRefPicL1Top and firstRefPicL1Bottom be the
top and bottom fields of RefPicList1[0], respectively, and let the following variables be specified as

topAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL.1Top, CurrPic)) (8-179)

bottomAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Bottom, CurrPic)) (8-180)

The variable colPic specifies the picture that contains the co-located macroblock as specified in Table 8-6.

Table 8-6 — Specification of the variable colPic

field pic flag | RefPicListl[0] | mb_field decoding flag | additional condition colPic
is ...
afield of a the frame containing
1 decoded frame RefPicListl1[0]
a decoded field RefPicListl[0]
a decoded frame RefPicList1[0]
topAbsDiffPOC < .
. bottomAbsDiffPOC firstRefPicl.1Top
0 a topAbsDiffPOC >= .
Complementary bOI‘;tomAb sDiffPOC firstRefPicL1Bottom
field pair -
{ (CurrMbAddr & 1) == 0 | firstRefPicL1Top
(CurrMbAddr & 1) =0 firstRefPicL1Bottom

When direct 8x8 inference flag is equal to 1, subMbPartldx is set as follows.

subMbPartldx = mbPartldx (8-181)

Let PicCodingStruct(X) be a function with the argument X being either CurrPic or colPic. It is specified in Table 8-7.

Table 8-7 — Specification of PicCodingStruct(X)

X is coded with field pic flag equal to ... | mb_adaptive frame field flag | PicCodingStruct(X)
1 FLD
0 0 FRM
0 1 AFRM

148 ITU-T Rec. H.264 (03/2005)

With luma4x4Blkldx = mbPartldx * 4 + subMbPartldx, the inverse 4x4 luma block scanning process as specified in
subclause 6.4.3 is invoked with luma4x4Blkldx as the input and (X, y) assigned to (xCol, yCol) as the output.

Table 8-8 specifies the co-located macroblock address mbAddrCol, yM, and the variable vertMvScale in two steps:

1. Specification of a macroblock address mbAddrX depending on PicCodingStruct(CurrPic), and
PicCodingStruct(colPic).

NOTE - It is not possible for CurrPic and colPic picture coding types to be either (FRM, AFRM) or (AFRM, FRM)
because these picture coding types must be separated by an IDR picture.

2. Specification of mbAddrCol, yM, and vertMvScale depending on mb_field decoding flag and the variable
fieldDecodingFlagX, which is derived as follows.

— If the macroblock mbAddrX in the picture colPic is a field macroblock, fieldDecodingFlagX is set equal to 1

— Otherwise (the macroblock mbAddrX in the picture colPic is a frame macroblock), fieldDecodingFlagX is set
equal to 0.

Unspecified values in Table 8-8 indicate that the value of the corresponding variable is not relevant for the current table
row.

mbAddrCol is set equal to CurrMbAddr or to one of the following values.

mbAddrColl =2 * PicWidthInMbs * (CurrMbAddr / PicWidthInMbs) +

(CurrMbAddr % PicWidthInMbs) + PicWidthInMbs * (yCol / 8) (8-182)
mbAddrCol2 =2 * CurrMbAddr + (yCol / 8) (8-183)
mbAddrCol3 =2 * CurrMbAddr + bottom_field flag (8-184)

mbAddrCol4 = PicWidthInMbs * (CurrMbAddr / (2 * PicWidthInMbs)) +

(CurrMbAddr % PicWidthInMbs) (8-185)
mbAddrCol5 = CurrMbAddr / 2 (8-186)
mbAddrCol6 = 2 * (CurrMbAddr / 2) + ((topAbsDiffPOC < bottomAbsDiffPOC)20 : 1) (8-187)
mbAddrCol7 = 2 * (CurrMbAddr /2) + (yCol / 8) (8-188)

ITU-T Rec. H.264 (11/2007) 149

Table 8-8 — Specification of mbAddrCol, yM, and vertMvScale

[
t | & g
3 | 8 o) %
= = Sl ®
S S 8|
3 | @ 82 o o
gl g S P -] B 3
R s 1z 3 z
9 3 P 2 3 S pu
£ | & S |2 £ Z 2
FLD CurrMbAddr |yCol One To One
FRM mbAddrColl |(2 *yCol) % 16 Frm_To_ Fld
FLD
0 |mbAddrCol2 [(2 *yCol) % 16 Frm_To_Fld
AFRM | 2*CurrMbAddr
1 |mbAddrCol3 |yCol One To One
* 1 1 0,
FLD mbAddrCol4 | . (*(C“g l\f}’?ddr / PieWidthInMbs) % 2) | 14 16 Frm
FRM (yCo)
FRM CurrMbAddr |yCol One _To One
0 mbAddrCol5 |8 * (CurrMbAddr % 2)+4 * (yCol/8) |Fld To Frm
FLD
1 mbAddrCol5 |yCol One _To One
0 |CurrMbAddr |yCol One To One
AFRM CurrMbAddr 0
1 |mbAddrCol6 |8 * (CurrMbAddr % 2)+ 4 * (yCol/8) |Fld To Frm
AFRM
0 |mbAddrCol7 [(2*yCol) % 16 Frm To_ Fld
CurrMbAddr 1
1 |CurrMbAddr |yCol One _To One

Let mbPartldxCol be the macroblock partition index of the co-located partition and subMbPartldxCol the sub-
macroblock partition index of the co-located sub-macroblock partition. The partition in the macroblock mbAddrCol
inside the picture colPic covering the sample (xCol, yM) is assigned to mbPartldxCol and the sub-macroblock
partition inside the partition mbPartldxCol covering the sample (xCol, yM) in the macroblock mbAddrCol inside the
picture colPic is assigned to subMbPartldxCol.

The prediction utilization flags predFlagl.0Col and predFlagL1Col are set equal to PredFlagl.O[mbPartldxCol | and
PredFlagl 1[mbPartldxCol], respectively, which are the prediction utilization flags that have been assigned to the
macroblock partition mbAddrCol\mbPartldxCol inside the picture colPic.

The motion vector mvCol and the reference index refldxCol are derived as follows.

— If the macroblock mbAddrCol is coded in Intra macroblock prediction mode or both prediction utilization flags,
predFlagL.0Col and predFlagl.1Col are equal to 0, both components of mvCol are set equal to 0 and refldxCol is set
equal to —1.

— Otherwise, the following applies.

— If predFlagLOCol is equal to 1, the motion vector mvCol and the reference index refldxCol are set equal to

150

MvLO[mbPartldxCol][subMbPartldxCol] and RefldxLO[mbPartldxCol], respectively, which are the motion
vector mvLO and the reference index refldxLO that have been assigned to the (sub-)macroblock partition
mbAddrCol\mbPartldxCol\subMbPartIdxCol inside the picture colPic.

Otherwise (predFlagl0Col is equal to 0 and predFlagL1Col is equal to 1), the motion vector mvCol and the
reference index refldxCol are set equal to MvLI1[mbPartldxCol J[subMbPartldxCol] and
RefldxL1[mbPartldxCol], respectively, which are the motion vector mvL1 and the reference index refldxL1

ITU-T Rec. H.264 (03/2005)

that have been assigned to the (sub-)macroblock partition mbAddrCol\mbPartldxCol\subMbPartldxCol inside
the picture colPic.

8.4.1.2.2 Derivation processfor spatial direct luma motion vector and reference index prediction mode

This process is invoked when direct_spatial mv_pred_flag is equal to 1 and any of the following conditions is true.
— mb_type is equal to B_Skip
— mb_type is equal to B_Direct 16x16
— sub_mb_type[mbPartldx] is equal to B_Direct 8x8.

Inputs to this process are mbPartldx, subMbPartldx.

Outputs of this process are the reference indices refldxL0, refldxL1, the motion vectors mvLO and mvLl1, the
sub-partition motion vector count subMvCnt, and the prediction list utilization flags, predFlagl.0 and predFlagL1.

The reference indices refldxL0 and refldxL.1 and the variable directZeroPredictionFlag are derived by applying the
following ordered steps.

1. Let the variable currSubMbType be set equal to sub_mb_type[mbPartldx].

2. The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType,
and listSuffixFlag = 0 as inputs and the output is assigned to the motion vectors mvLON and the reference indices
refldxLLON with N being replaced by A, B, or C.

3. The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType,
and listSuffixFlag = 1 as inputs and the output is assigned to the motion vectors mvL1N and the reference indices
refldxLL1N with N being replaced by A, B, or C.

NOTE 1 — The motion vectors mvLON, mvLIN and the reference indices refldxLON, refldxLIN are identical for all 4x4
sub-macroblock partitions of a macroblock.

4. The reference indices refldxL0, refldxL1, and directZeroPredictionFlag are derived by

refldxLLO = MinPositive(refldxLOA, MinPositive(refldxL0B, refldxLOC)) (8-189)

refldxLL1 = MinPositive(refldxL1A, MinPositive(refldxL1B, refldxL1C)) (8-190)

directZeroPredictionFlag = 0 (8-191)
where

Min(x, if x>=0andy>=0
MinPositive(x, y)= n(xy) if x>=0andy (8-192)
Max(x,y) otherwise

5. When both reference indices refldxL0 and refldxL1 are less than 0,

refldxL0 =0 (8-193)
refldxL1 =0 (8-194)
directZeroPredictionFlag = 1 (8-195)

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to refldxCol and mvCol.

The variable colZeroFlag is derived as follows.

— If all of the following conditions are true, colZeroFlag is set equal to 1.
— RefPicList1[0] is currently marked as "used for short-term reference",
— refldxCol is equal to 0,

— both motion vector components mvCol[0] and mvCol[1] lie in the range of -1 to 1 in units specified as
follows.

— If the co-located macroblock is a frame macroblock, the units of mvCol[0] and mvCol[1] are units of
quarter luma frame samples.

ITU-T Rec. H.264 (11/2007) 151

— Otherwise (the co-located macroblock is a field macroblock), the units of mvCol[0] and mvCol[1] are
units of quarter luma field samples.

NOTE 2 - For purposes of determining the condition above, the value mvCol[1] is not scaled to use the units of a motion vector
for the current macroblock in cases when the current macroblock is a frame macroblock and the co-located macroblock is a field
macroblock or when the current macroblock is a field macroblock and the co-located macroblock is a frame macroblock. This
aspect differs from the use of mvCol[1] in the temporal direct mode as specified in subclause 8.4.1.2.3, which applies scaling to
the motion vector of the co-located macroblock to use the same units as the units of a motion vector for the current macroblock,
using Equation 8-198 or Equation 8-199 in these cases.

— Otherwise, colZeroFlag is set equal to 0.

The motion vectors mvLX (with X being 0 or 1) are derived as follows.

— If any of the following conditions is true, both components of the motion vector mvLX are set equal to 0.
— directZeroPredictionFlag is equal to 1
— refldxLX is less than 0
— refldxLX is equal to 0 and colZeroFlag is equal to 1

— Otherwise, the process specified in subclause 8.4.1.3 is invoked with mbPartldx = 0, subMbPartldx = 0, refldxLX,
and currSubMbType as inputs and the output is assigned to mvLX.

NOTE 3 — The motion vector mvLX returned from subclause 8.4.1.3 is identical for all 4x4 sub-macroblock partitions
of'a macroblock for which the process is invoked.

The prediction utilization flags predFlaglL0 and predFlagL1 are derived as specified using Table 8-9.

Table 8-9 — Assignment of prediction utilization flags

refldxL 0 refldxL1 predFlagL 0 predFlagl 1
>=() >=() 1 1
>=0 <0 1 0
<0 >=() 0 1

The variable subMvCnt is derived as follows.
— If subMbPartldx is not equal to 0, subMvCnt is set equal to 0.
— Otherwise (subMbPartldx is equal to 0), subMvCnt is set equal to predFlagl.0 + predFLagL1.

8.4.1.2.3 Derivation processfor temporal direct luma motion vector and referenceindex prediction mode
This process is invoked when direct_spatial mv_pred_flag is equal to 0 and any of the following conditions is true.
— mb_type is equal to B_Skip
— mb typeis equal to B Direct 16x16
— sub_mb_type[mbPartldx] is equal to B_Direct 8x8.
Inputs to this process are mbPartldx and subMbPartIdx.

Outputs of this process are the motion vectors mvL0 and mvL1, the reference indices refldxLLO and refldxL.1, and the
prediction list utilization flags, predFlagL0 and predFlagL1.

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to colPic, mbAddrCol, mvCol, refldxCol, and vertMvScale.

The reference indices refldxL0O and refldxL1 are derived as follows.
refldxLO = ((refldxCol <0) ? 0 : MapColToList0(refldxCol)) (8-196)

refldxL1 =0 (8-197)

NOTE 1 — If the current macroblock is a field macroblock, refldxL0 and refldxL1 index a list of fields; otherwise (the current
macroblock is a frame macroblock), refldxL0 and refldxL1 index a list of frames or complementary reference field pairs.

152 ITU-T Rec. H.264 (03/2005)

Let refPicCol be a frame, a field, or a complementary field pair that was referred by the reference index refldxCol when
decoding the co-located macroblock mbAddrCol inside the picture colPic. The function MapColToListO(refldxCol) is
specified as follows.

— If vertMvScale is equal to One_To_One, the following applies.

If field pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

— Let refldxLOFrm be the lowest valued reference index in the current reference picture list RefPicList0
that references the frame or complementary field pair that contains the field refPicCol. RefPicList0 shall
contain a frame or complementary field pair that contains the field refPicCol. The return value of
MapColToListO() is specified as follows.

— If the field referred to by refldxCol has the same parity as the current macroblock,
MapColToListO(refldxCol) returns the reference index (refldxLOFrm << 1).

— Otherwise (the field referred by refldxCol has the opposite parity of the current macroblock),
MapColToListO(refldxCol) returns the reference index ((refldxLOFrm <<1)+1).

Otherwise (field pic flag is equal to 1 or the current macroblock is a frame macroblock),
MapColToListO(refldxCol) returns the lowest valued reference index refldxL0 in the current reference picture
list RefPicList0 that references refPicCol. RefPicList0 shall contain refPicCol.

— Otherwise, if vertMvScale is equal to Frm_To_Fld, the following applies.

If field pic flag is equal to 0, let refldxLOFrm be the lowest valued reference index in the current reference
picture list RefPicList0 that references refPicCol. MapColToListO(refldxCol) returns the reference index
(refldxLOFrm << 1). RefPicList0 shall contain refPicCol.

Otherwise (field pic_flag is equal to 1), MapColToListO(refldxCol) returns the lowest valued reference index
refldxL0 in the current reference picture list RefPicListO that references the field of refPicCol with the same
parity as the current picture CurrPic. RefPicList0 shall contain the field of refPicCol with the same parity as the
current picture CurrPic.

— Otherwise (vertMvScale is equal to Fld_To Frm), MapColToList0O(refldxCol) returns the lowest valued reference
index refldxL0 in the current reference picture list RefPicList0 that references the frame or complementary field pair
that contains refPicCol. RefPicList0 shall contain a frame or complementary field pair that contains the field
refPicCol.

NOTE 2 — A decoded reference picture that was marked as "used for short-term reference" when it was referenced in
the decoding process of the picture containing the co-located macroblock may have been modified to be marked as
"used for long-term reference" before being used for reference for inter prediction using the direct prediction mode for
the current macroblock.

Depending on the value of vertMvScale the vertical component of mvCol is modified as follows.

— IfvertMvScale is equal to Frm_To_Fld

mvCol[1]=mvCol[1]/2 (8-198)

— Otherwise, if vertMvScale is equal to FId To_Frm

mvCol[1 [=mvCol[1] *2 (8-199)

— Otherwise (vertMvScale is equal to One To One), mvCol[1] remains unchanged.

The variables currPicOrField, pic0, and picl, are derived as follows.

— Iffield pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

currPicOrField is the field of the current picture CurrPic that has the same parity as the current macroblock.
picl is the field of RefPicList1[0] that has the same parity as the current macroblock.
The variable pic0 is derived as follows.

— IfrefldxLO % 2 is equal to 0, picO is the field of RefPicListO[refldxL0 / 2] that has the same parity as the
current macroblock.

— Otherwise (refldxL0 % 2 is not equal to 0), picO is the field of RefPicListO[refldxL0 /2] that has the
opposite parity of the current macroblock.

ITU-T Rec. H.264 (11/2007) 153

— Otherwise (field pic flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField is the
current picture CurrPic, picl is the decoded reference picture RefPicListl[0], and picO is the decoded reference
picture RefPicListO[refldxLo0].

The two motion vectors mvL0 and mvL1 for each 4x4 sub-macroblock partition of the current macroblock are derived
as follows:

NOTE 3 — It is often the case that many of the 4x4 sub-macroblock partitions share the same motion vectors and
reference pictures. In these cases, temporal direct mode motion compensation can calculate the inter prediction sample
values in larger units than 4x4 luma sample blocks. For example, when direct 8x8 inference flag is equal to 1, at
least each 8x8 luma sample quadrant of the macroblock shares the same motion vectors and reference pictures.

— If the reference index refldxLO refers to a long-term reference picture, or DiffPicOrderCnt(picl, pic0) is equal
to 0, the motion vectors mvL0, mvL1 for the direct mode partition are derived by

mvL0 = mvCol (8-200)

mvL1 =0 (8-201)

— Otherwise, the motion vectors mvL0, mvL1 are derived as scaled versions of the motion vector mvCol of the
co-located sub-macroblock partition as specified below (see Figure 8-2)

tx=(16384+Abs(td/2))/td (8-202)
DistScaleFactor = Clip3(-1024, 1023, (tb * tx +32)>>6) (8-203)
mvL0 = (DistScaleFactor * mvCol + 128) >> 8 (8-204)
mvL1 =mvL0 — mvCol (8-205)

where tb and td are derived as follows.

tb = Clip3(-128, 127, DiffPicOrderCnt(currPicOrField, pic0)) (8-206)

td = Clip3(-128, 127, DiffPicOrderCnt(picl, pic0)) (8-207)

NOTE 4 — mvLO0 and mvL1 cannot exceed the ranges specified in Annex A.
The prediction utilization flags predFlagl.0 and predFlagl.1 are both set equal to 1.

Figure 8-2 illustrates the temporal direct-mode motion vector inference when the current picture is temporally between
the reference picture from reference picture list 0 and the reference picture from reference picture list 1.

154 ITU-T Rec. H.264 (03/2005)

List 0 Reference Current B List 1 Reference

mvL1l

T~ co-located partition

direct-mode B partition

time

Figure 8-2 — Example for temporal direct-mode motion vector inference (informative)

8.4.1.3 Derivation processfor luma motion vector prediction

Inputs to this process are

— the macroblock partition index mbPartldx,

— the sub-macroblock partition index subMbPartIdx,

— the reference index of the current partition refldxL X (with X being 0 or 1),

— the variable currSubMbType.

Output of this process is the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

The derivation process for the neighbouring blocks for motion data in subclause 8.4.1.3.2 is invoked with mbPartldx,
subMbPartldx, currSubMbType, and listSuffixFlag = X (with X being 0 or 1 for refldxLX being refldxL0 or refldxL1,
respectively) as the input and with mbAddrN\mbPartldxN\subMbPartIdxN, reference indices refldxLXN and the
motion vectors mvLXN with N being replaced by A, B, or C as the output.

The derivation process for median luma motion vector prediction in subclause 8.4.1.3.1 is invoked with
mbAddrN\mbPartldxN\subMbPartldxN, mvLXN, refldxLXN with N being replaced by A, B, or C and refldxLX as the
input and mvpLX as the output, unless one of the following is true.

— MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartldx is equal to 0, and
refldxLXB is equal to refldxLX,

mvpLX = mvLXB (8-208)

— MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartldx is equal to I, and
refldxL. XA is equal to refldxLX,

mvpLX = mvLXA (8-209)

— MbPartWidth(mb _type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartldx is equal to 0, and
refldxLXA is equal to refldxLX,

mvpLX = mvLXA (8-210)

— MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartldx is equal to 1, and
refldxLXC is equal to refldxLX,

mvpLX = mvLXC (8-211)

ITU-T Rec. H.264 (11/2007) 155

Figure 8-3 illustrates the non-median prediction as specified in the four bulleted items above.

8*16 16*8

|
TT=

Figure 8-3 —Directional segmentation prediction (informative)

8.4.1.3.1 Derivation process for median luma motion vector prediction

Inputs to this process are

— the neighbouring partitions mbAddrN\mbPartIdxN\subMbPartIdxN (with N being replaced by A, B, or C),

— the motion vectors mvLXN (with N being replaced by A, B, or C) of the neighbouring partitions,

— the reference indices refldxLXN (with N being replaced by A, B, or C) of the neighbouring partitions, and

— the reference index refldxLLX of the current partition.

Output of this process is the motion vector prediction mvpLX.

The variable mvpLX is derived as follows:

— When both partitions mbAddrB\mbPartldxB\subMbPartldxB and mbAddrC\mbPartldxC\subMbPartldxC are not
available and mbAddrA\mbPartldx A\subMbPartIdxA is available,

mvLXB =mvLXA (8-212)
mvLXC =mvLXA (8-213)
refldxLXB = refldxLXA (8-214)
refldxLXC = refldxLXA (8-215)

— Depending on reference indices refldxLXA, refldxLXB, or refldxL.XC, the following applies.

156

If one and only one of the reference indices refldxLXA, refldxLXB, or refldxLXC is equal to the reference
index refldxLX of the current partition, the following applies. Let refldxLXN be the reference index that is equal
to refldxLX, the motion vector mvLXN is assigned to the motion vector prediction mvpLX:

mvpLX = mvLXN (8-216)
Otherwise, each component of the motion vector prediction mvpLX is given by the median of the corresponding
vector components of the motion vector mvLXA, mvLXB, and mvLXC:

mvpLX[0] = Median(mvLXA[0], mvLXB[0], mvLXC[0]) (8-217)

mvpLX[1]=Median(mvLXA[1], mvLXB[1], mvLXC[1]) (8-218)

ITU-T Rec. H.264 (03/2005)

8.4.1.3.2 Derivation process for motion data of neighbouring partitions

Inputs to this process are

the macroblock partition index mbPartldx,

the sub-macroblock partition index subMbPartldx,

the current sub-macroblock type currSubMbType,

the list suffix flag listSuffixFlag.

Outputs of this process are (with N being replaced by A, B, or C)

— mbAddrN\mbPartldxN\subMbPartIdxN specifying neighbouring partitions,

— the motion vectors mvLXN of the neighbouring partitions, and

— the reference indices refldxLXN of the neighbouring partitions.

Variable names that include the string "LX" are interpreted with the X being equal to listSuffixFlag.

The partitions mbAddrN\mbPartldxN\subMbPartldxN with N being either A, B, or C are derived in the following
ordered steps.

1.

Let mbAddrD\mbPartldxD\subMbPartldxD be variables specifying an additional neighbouring partition.

The process in subclause 6.4.10.7 is invoked with mbPartldx, currSubMbType, and subMbPartldx as input and the
output is assigned to mbAddrN\mbPartldxN\subMbPartldxN with N being replaced by A, B, C, or D.

When the partition mbAddrC\mbPartldxC\subMbPartldxC is not available, the following applies

mbAddrC = mbAddrD (8-219)
mbPartldxC = mbPartldxD (8-220)
subMbPartldxC = subMbPartldxD (8-221)

The motion vectors mvLXN and reference indices refldxLXN (with N being A, B, or C) are derived as follows.

If the macroblock partition or sub-macroblock partition mbAddrN\mbPartldxN\subMbPartIdxN is not available or
mbAddrN is coded in Intra prediction mode or predFlagLX of mbAddrN\mbPartldxN\subMbPartldxN is equal to 0,
both components of mvLXN are set equal to 0 and refldxLXN is set equal to —1.

Otherwise, the following applies.

The motion vector mvLXN and reference index refldxLXN are set equal to
MvLX][mbPartldxN][subMbPartldxN | and RefldxLX[mbPartldxN], respectively, which are the motion
vector mvLX and reference index refldxL.X that have been assigned to the (sub-)macroblock partition
mbAddrN\mbPartldxN\subMbPartIdxN.

The variables mvLXNJ 1] and refldxLXN are further processed as follows.

— If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame macroblock

mvLXN[1]=mvLXN[1]/2 (8-222)

refldxLXN = refldxLXN * 2 (8-223)

— Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN is a field
macroblock

mvLXN[1]=mvLXN[1]*2 (8-224)

refldxLXN = refldxLXN / 2 (8-225)

ITU-T Rec. H.264 (11/2007) 157

— Otherwise, the vertical motion vector component mvLXN[1] and the reference index refldxLXN remain
unchanged.

8.4.1.4 Derivation processfor chroma motion vectors

This process is only invoked when ChromaArrayType is not equal to 0.

Inputs to this process are a luma motion vector mvLX and a reference index refldxLX.

Output of this process is a chroma motion vector mvCLX.

A chroma motion vector is derived from the corresponding luma motion vector.

The precision of the chroma motion vector components is 1+ (4 * SubWidthC) horizontally and
1 + (4 * SubHeightC) vertically.

NOTE - For example, when using the 4:2:0 chroma format, since the units of luma motion vectors are one-quarter luma sample

units and chroma has half horizontal and vertical resolution compared to luma, the units of chroma motion vectors are one-eighth
chroma sample units, i.e., a value of 1 for the chroma motion vector refers to a one-eighth chroma sample displacement. For
example, when the luma vector applies to 8x16 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies
to 4x8 chroma samples and when the luma vector applies to 4x4 luma samples, the corresponding chroma vector in 4:2:0 chroma
format applies to 2x2 chroma samples.

For the derivation of the motion vector mvCLX, the following applies.

If ChromaArrayType is not equal to 1 or the current macroblock is a frame macroblock, the horizontal and vertical
components of the chroma motion vector mvCLX are derived as

mvCLX[0]=mvLX[0] (8-226)
mvCLX[1]=mvLX[I] (8-227)

Otherwise (ChromaArrayType is equal to 1 and the current macroblock is a field macroblock), only the horizontal
component of the chroma motion vector mvCLX] 0] is derived using Equation 8-226. The vertical component of
the chroma motion vector mvCLX][1] is dependent on the parity of the current field or the current macroblock and
the reference picture, which is referred by the reference index refldxLX. mvCLX] 1] is derived from mvLX] 1]
according to Table 8-10.

Table 8-10 — Derivation of the vertical component of the chroma vector in field coding mode

Parity conditions
mvCLX[1]
Reference picture (refldxLX) Current field (picture/macroblock)
Top field Bottom field mvLX[1]+2
Bottom field Top field mvLX[1]-2
Otherwise mvLX[1]

8.4.2 Decoding processfor Inter prediction samples

Inputs to this process are

a macroblock partition mbPartldx,
a sub-macroblock partition subMbPartldx.

variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available) and partHeightC (if available)

luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0 chroma motion vectors
mvCLO and mvCL1

reference indices refldxL0 and refldxL1

prediction list utilization flags, predFlagL0 and predFlagL1,

158 ITU-T Rec. H.264 (03/2005)

— variables for weighted prediction logWDc, Woc, Wic, 0gc, 01c With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are

— the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPart; of prediction luma
samples, and when ChromaArrayType is not equal to 0 two (partWidthC)x(partHeightC) arrays predPartcy,
predPartc, of prediction chroma samples, one for each of the chroma components Cb and Cr.

Let predPartLOp and predPartL1; be (partWidth)x(partHeight) arrays of predicted luma sample values and when
ChromaArrayType is not equal toO predPartLOc,, predPartLlc,, predPartLOc, and predPartLlc, be
(partWidthC)x(partHeightC) arrays of predicted chroma sample values.

For LX being replaced by either LO or L1 in the variables predFlagl. X, RefPicListX, refldxLX, refPicLX, predPartL.X,
the following is specified.

When predFlagLX is equal to 1, the following applies.

— The reference picture consisting of an ordered two-dimensional array refPicLX; of luma samples and when
ChromaArrayType is not equal to 0 two ordered two-dimensional arrays refPicL X, and refPicLXc, of chroma
samples is derived by invoking the process specified in subclause 8.4.2.1 with refldxLX and RefPicListX given as
input.

— The array predPartLX; and when ChromaArrayType is not equal to 0 the arrays predPartLXc;, and predPartLXc,
are derived by invoking the process specified in subclause 8.4.2.2 with the current partition specified by
mbPartldx\subMbPartldx, the motion vectors mvLX, mvCLX (if available), and the reference arrays with
refPicLX;, refPicLXc, (if available), and refPicL X, (if available) given as input.

For C being replaced by L, Cb (if available), or Cr (if available), the array predPartc of the prediction samples of
component C is derived by invoking the process specified in subclause 8.4.2.3 with the current partition specified by
mbPartldx and subMbPartldx, the prediction utilization flags predFlagl.0 and predFlagL1, the arrays predPartLOc and
predPartL 1, and the variables for weighted prediction logWDc, wyc, Wic, Ogc, O1c given as input.

8.4.2.1 Reference picture selection process
Input to this process is a reference index refldxLX.

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLX; and,
when ChromaArrayType is not equal to 0, two two-dimensional arrays of chroma samples refPicL. X, and refPicLX;.

Depending on field pic flag, the reference picture list RefPicListX (which has been derived as specified in
subclause 8.2.4) consists of the following.

— Iffield pic flag is equal to 1, each entry of RefPicListX is a reference field or a field of a reference frame.

— Otherwise (field pic flag is equal to 0), each entry of RefPicListX is a reference frame or a complementary
reference field pair.

For the derivation of the reference picture, the following applies.

— If field pic_flag is equal to 1, the reference field or field of a reference frame RefPicListX[refldxLX] is the output.
The output reference field or field of a reference frame consists of a (PicWidthInSamples;)x(PicHeightInSamples;)
array of luma samples refPicLX; and, when ChromaArrayType is not equal to0, two
(PicWidthInSamplesc)x(PicHeightInSamplesc) arrays of chroma samples refPicL Xy, and refPicLXc,.

— Otherwise (field pic_flag is equal to 0), the following applies.

— If the current macroblock is a frame macroblock, the reference frame or complementary reference field pair
RefPicListX[refldxLX] is the output. The output reference frame or complementary reference field pair
consists of a (PicWidthInSamples;)x(PicHeightInSamples;) array of luma samples refPicLX; and, when
ChromaArrayType is not equal to 0, two (PicWidthInSamplesc)x(PicHeightinSamplesc) arrays of chroma
samples refPicL X, and refPicLXc;.

— Otherwise (the current macroblock is a field macroblock), the following applies.
— Let refFrame be the reference frame or complementary reference field pair RefPicListX[refldxLX /2].
— The field of refFrame is selected as follows.

— IfrefldxLX % 2 is equal to 0, the field of refFrame that has the same parity as the current macroblock is
the output.

ITU-T Rec. H.264 (11/2007) 159

— Otherwise (refldxLX % 2 is equal to 1), the field of refFrame that has the opposite parity as the current
macroblock is the output.

— The output reference field or field of a reference frame consists of a
(PicWidthInSamples;)x(PicHeightInSamples; /2) array of Iuma samples refPicLX; and, when
ChromaArrayType is not equal to 0, two (PicWidthInSamplesc)x(PicHeightInSamplesc / 2) arrays of chroma
samples refPicL X, and refPicLXc;,.

Depending on separate_colour plane flag, the following applies.

— If separate_colour plane flag is equal to 0, the reference picture sample arrays refPicLX, refPicL X, (if available),
and refPicLXc; (if available) correspond to decoded sample arrays S;, Scy (if available), S¢; (if available) derived in
subclause 8.7 for a previously-decoded reference field or reference frame or complementary reference field pair or
field of a reference frame.

— Otherwise (separate_colour_plane flag is equal to 1), the following applies.

— If colour plane id is equal to 0, the reference picture sample array refPicLX| corresponds to the decoded sample
array S; derived in subclause 8.7 for a previously-decoded reference field or reference frame or complementary
reference field pair or field of a reference frame.

— Otherwise, if colour plane id is equal to 1, the reference picture sample array refPicLX, corresponds to the
decoded sample array Scy, derived in subclause 8.7 for a previously-decoded reference field or reference frame or
complementary reference field pair or field of a reference frame.

— Otherwise (colour plane id is equal to 2), the reference picture sample array refPicLX; corresponds to the
decoded sample array Sc; derived in subclause 8.7 for a previously-decoded reference field or reference frame or
complementary reference field pair or field of a reference frame.

8.4.2.2 Fractional sampleinterpolation process

Inputs to this process are

— the current partition given by its partition index mbPartldx and its sub-macroblock partition index subMbPartldx,
— the width and height partWidth, partHeight of this partition in luma-sample units,

— aluma motion vector mvLX given in quarter-luma-sample units,

— when ChromaArrayType is not equal to0, a chroma motion vector mvCLX with a precision of
one-(4*SubWidthC)-th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units
vertically, and

— the selected reference picture sample arrays refPicLX;, and when ChromaArrayType is not equal to 0, refPicL Xy,
and refPicL.Xc,.

Outputs of this process are
— a(partWidth)x(partHeight) array predPartLX; of prediction luma sample values and

— when ChromaArrayType is not equal to 0, two (partWidthC)x(partHeightC) arrays predPartLXcy,, and predPartL. X,
of prediction chroma sample values.

Let (xAL, yAL) be the location given in full-sample units of the upper-left luma sample of the current partition given
by mbPartldx\subMbPartldx relative to the upper-left luma sample location of the given two-dimensional array of luma
samples.

Let (xInty, yInt,) be a luma location given in full-sample units and (xFrac;, yFrac,) be an offset given in
quarter-sample units. These variables are used only inside this subclause for specifying general fractional-sample
locations inside the reference sample arrays refPicLX;, refPicL X, (if available), and refPicL X, (if available).

For each luma sample location (0 <=x; < partWidth, 0 <=y < partHeight) inside the prediction luma sample array
predPartLX; , the corresponding prediction luma sample value predPartLX; [x;, y.] is derived as follows:

— The variables xInt;, yInt;, xFrac;, and yFrac, are derived by

xInt, = xAp + (mvLX[0]>>2)+ x; (8-228)
yInt, = yA, +(mvLX[1]>>2)+y; (8-229)

160 ITU-T Rec. H.264 (03/2005)

xFrac, = mvLX[0] & 3 (8-230)
yFrac, =mvLX[1] & 3 (8-231)

— The prediction luma sample value predPartLX;[x;,y.] is derived by invoking the process specified in
subclause 8.4.2.2.1 with (xInt;, yInty), (xFracy, yFracy) and refPicLX; given as input.

When ChromaArrayType is not equal to 0, the following applies.

Let (xIntc, yIntc) be a chroma location given in full-sample units and (xFracc, yFracc) be an offset given in
one-(4*SubWidthC)-th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units vertically.
These variables are used only inside this subclause for specifying general fractional-sample locations inside the
reference sample arrays refPicL X, and refPicLX,.

For each chroma sample location (0 <= x¢ < partWidthC, 0 <= y¢ < partHeightC) inside the prediction chroma sample
arrays predPartLXc, and predPartLXc,, the corresponding prediction chroma sample values predPartLXcy[Xc, yc] and
predPartLXc,[xc, yc] are derived as follows:

— Depending on ChromaArrayType, the variables xIntc, yIntc, xFracc, and yFracc are derived as follows.

— If ChromaArrayType is equal to 1,

xInte = (xAL / SubWidthC) + (mvCLX[0]>>3) + xc (8-232)
yInte = (yAr / SubHeightC) + (mvCLX[1]>>3) +yc (8-233)
xFracc =mvCLX[0] & 7 (8-234)
yFracc=mvCLX[1] & 7 (8-235)

— Otherwise, if ChromaArrayType is equal to 2,

xIntc = (XA / SubWidthC) + (mvCLX[0]>>3) + x¢ (8-236)
yInte = (yAr / SubHeightC) + (mvCLX[1]>>2) +yc (8-237)
xFracc =mvCLX[0] & 7 (8-238)
yFracc=(mvCLX[1]&3)<<1 (8-239)

— Otherwise (ChromaArrayType is equal to 3),

xIntc =xAp + (mvLX[0]>>2) + xc (8-240)
yintc =yAp + (mvLX[1]>>2)+yc (8-241)
xFracc=(mvCX[0] & 3) (8-242)
yFracc=(mvCX[1]&3) (8-243)

— Depending on ChromaArrayType, the following applies.
— If ChromaArrayType is not equal to 3, the following applies.

— The prediction sample value predPartLXc,[Xc, yc] is derived by invoking the process specified in subclause
8.4.2.2.2 with (xIntc, yIntc), (xFracc, yFracc) and refPicLXy, given as input.

— The prediction sample value predPartL X[Xc, yc] is derived by invoking the process specified in subclause
8.4.2.2.2 with (xIntc, yIntc), (xFracc, yFracc) and refPicL X, given as input.

— Otherwise (ChromaArrayType is equal to 3), the following applies.

— The prediction sample value predPartLXc,[Xc, yc] is derived by invoking the process specified in subclause
8.4.2.2.1 with (xIntc, yIntc), (xFracc, yFracc) and refPicLXy, given as input.

— The prediction sample value predPartLXc,[Xc, yc] is derived by invoking the process specified in subclause
8.4.2.2.1 with (xIntc, yIntc), (xFracc, yFracc) and refPicL X, given as input.

ITU-T Rec. H.264 (11/2007) 161

8.4.2.2.1 Luma sampleinterpolation process

Inputs to this process are

— aluma location in full-sample units (xInt;, yInt,),

— aluma location offset in fractional-sample units (xFracy, yFrac;), and
— the luma sample array of the selected reference picture refPicL X .

Output of this process is a predicted luma sample value predPartLX; [x;, y]

L L L] L]

o[«[o[c] [0
d flog

n ik m)
nip r

M) N 7] @]

L L L] L]

Figure 8-4 —Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blockswith lower-case |etters) for quarter sample lumainter polation

The variable refPicHeightEffective;, which is the height of the effective reference picture luma array, is derived as
follows.

— If MbaffFrameFlag is equal to 0 or mb_field decoding flag is equal to 0, refPicHeightEffective, is set equal to
PicHeightInSamples; .

— Otherwise (MbaffFrameFlag is equal to 1 and mb_field decoding flag is equal to 1), refPicHeightEffective, is set
equal to PicHeightInSamples; /2.

In Figure 8-4, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample
locations inside the given two-dimensional array refPicLX; of luma samples. These samples may be used for generating
the predicted luma sample value predPartLX, [x;, yi |. The locations (xZ;, yZ) for each of the corresponding luma
samples Z, where Z may be A, B, C, D, E,F, G, H, L J, K, L, M, N, P, Q, R, S, T, or U, inside the given array
refPicLX of luma samples are derived as follows:

xZy = Clip3(0, PicWidthInSamples; — 1, xInt; + xDZ;)
yZ, = Clip3(0, refPicHeightEffective, — 1, yInt; + yDZ,) (8-244)

Table 8-11 specifies (xDZ., yDZ,) for different replacements of Z.

162 ITU-T Rec. H.264 (03/2005)

Table 8-11 — Differential full-sample luma locations

Z

xDZ, | 0 1 0 1 22 -1 10 1 2 3 2 [-1 |0 1 2 3 0 1 0 1

yDZ, | -2 |2 |-1 |-1 |0 0 0 0 0 0 1 1 1 1 1 1 2 2 3 3

Given the luma samples ‘A’ to ‘U’ at full-sample locations (XA, yAr) to (xUr, yUy), the luma samples ‘a’ to ‘s’ at
fractional sample positions are derived by the following rules. The luma prediction values at half sample positions are
derived by applying a 6-tap filter with tap values (1, -5, 20, 20, -5, 1). The luma prediction values at quarter sample
positions are derived by averaging samples at full and half sample positions. The process for each fractional position is
described below.

The samples at half sample positions labelled b are derived by first calculating intermediate values denoted as b, by
applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half
sample positions labelled h are derived by first calculating intermediate values denoted as h; by applying the 6-tap
filter to the nearest integer position samples in the vertical direction:

b=(E-5*F+20*G+20*H-5*1+1J) (8-245)
h=(A-5*C+20*G+20*M-5*R+T) (8-246)

The final prediction values b and h are derived using:

b=Cliply((b, +16)>>5) (8-247)
h=Cliply((h, +16)>>5) (8-248)

The samples at half sample position labelled as j are derived by first calculating intermediate value denoted as j; by
applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or
vertical direction because these yield an equal result.

ji=cc—5%dd+20*h; +20*m; -5 * ee + ff, or (8-249)
ji=aa—5%*bb+20*b; +20*s; —5*gg+hh (8-250)

where intermediate values denoted as aa, bb, gg, s; and hh are derived by applying the 6-tap filter horizontally in the
same manner as the derivation of b; and intermediate values denoted as cc, dd, ee, m; and ff are derived by applying
the 6-tap filter vertically in the same manner as the derivation of h;. The final prediction value j are derived using:

j=Cliply((j; +512)>>10) (8-251)
The final prediction values s and m are derived from s; and m; in the same manner as the derivation of b and h, as
given by:

s =Cliply((s; +16)>>5) (8-252)

m=Cliply((m; +16)>>5) (8-253)

The samples at quarter sample positions labelled as a, ¢, d, n, f, i, k, and q are derived by averaging with upward
rounding of the two nearest samples at integer and half sample positions using:

a=(G+b+1)>>1 (8-254)
c=(H+b+1)>>1 (8-255)
d=(G+h+1)>>1 (8-256)
n=(M+h+1)>>1 (8-257)
f=(b+j+1)>>1 (8-258)
i=(h+j+1)>>1 (8-259)
k=(j+m+1)>>1 (8-260)
q=(j+s+1)>>1 (8-261)

ITU-T Rec. H.264 (11/2007) 163

— The samples at quarter sample positions labelled as e, g, p, and r are derived by averaging with upward rounding of
the two nearest samples at half sample positions in the diagonal direction using:

e=(b+th+1)>1 (8-262)
g=(b+m+1)>>1 (8-263)
p=(h+s+1)>>1 (8-264)
r=(m+s+1)>1 (8-265)

The luma location offset in fractional-sample units (xFracy, yFracy) specifies which of the generated luma samples at
full-sample and fractional-sample locations is assigned to the predicted luma sample value predPartLX;[x;, yr]. This
assignment is done according to Table 8-12. The value of predPartLX, [x;, y.] is the output.

Table 8-12 — Assignment of the luma prediction sample predPartL X, [x., Y,]

xFracp 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

yFracp 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

predPartLX [x,ye]| G | d h n a e i p b f] q c g k r

8.4.2.2.2 Chroma sampleinterpolation process

This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are

— achroma location in full-sample units (xIntc, ylntc),

— achroma location offset in fractional-sample units (xFracc, yFracc), and
— chroma component samples from the selected reference picture refPicLXc.
Output of this process is a predicted chroma sample value predPartL X[xc, yc |-

In Figure 8-5, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the
given two-dimensional array refPicL X of chroma samples.

xFrac, 8-xFrac,

8-yFrac,

Figure 8-5—Fractional sample position dependent variablesin chroma inter polation and surrounding integer
position samples A, B, C, and D

The variable refPicHeightEffectivec, which is the height of the effective reference picture chroma array, is derived as
follows.

— If MbaffFrameFlag is equal to 0 or mb_field decoding flag is equal to 0, refPicHeightEffectivec is set equal to
PicHeightInSamplesc.

— Otherwise (MbaffFrameFlag is equal to 1 and mb_field decoding_flag is equal to 1), refPicHeightEffective is set
equal to PicHeightInSamplesc / 2.

164 ITU-T Rec. H.264 (03/2005)

The sample coordinates specified in Equations 8-266 through 8-273 are used for generating the predicted chroma
sample value predPartL X[xc, yc |-

xAc = Clip3(0, PicWidthInSamplesc — 1, xIntc) (8-266)
xB¢ = Clip3(0, PicWidthInSamplesc — 1, xIntc + 1) (8-267)
xCc¢ = Clip3(0, PicWidthInSamplesc — 1, xIntc) (8-268)
xDc = Clip3(0, PicWidthInSamplesc — 1, xIntc + 1)) (8-269)
yAc = Clip3(0, refPicHeightEffectivec — 1, yIntc) (8-270)
yBc¢ = Clip3(0, refPicHeightEffectivec — 1, yIntc) (8-271)
yCc = Clip3(0, refPicHeightEffectivec — 1, yIlntc + 1) (8-272)
yD¢ = Clip3(0, refPicHeightEffectivec — 1, yIntc + 1) (8-273)

Given the chroma samples A, B, C, and D at full-sample locations specified in Equations 8-266 through 8-273, the
predicted chroma sample value predPartL X[xc, yc] is derived as follows:

predPartLX[X¢, yc] = ((8 —xFracc) * (8 — yFracc) * A + xFracc * (8 — yFracc) * B +
(8 —xFracc) * yFracc * C + xFracc * yFracc * D +32)>>6 (8-274)

8.4.2.3 Weighted sample prediction process

Inputs to this process are

— mbPartldx: the current partition given by the partition index
— subMbPartldx: the sub-macroblock partition index

— predFlagL0 and predFlagL1: prediction list utilization flags

— predPartLX;: a (partWidth)x(partHeight) array of prediction luma samples (with LX being replaced by LO or L1
depending on predFlagL0 and predFlagL1)

— when ChromaArrayType is not equal to 0, predPartL.Xc, and predPartLXc,: (partWidthC)x(partHeightC) arrays of
prediction chroma samples, one for each of the chroma components Cb and Cr (with LX being replaced by LO or
L1 depending on predFlagl.0 and predFlagLl.1)

— variables for weighted prediction logWD¢, woc, Wic, 0oc, 01c with C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr

Outputs of this process are
— predPart;: a (partWidth)x(partHeight) array of prediction luma samples and

— when ChromaArrayType is not equal to 0, predPartc,, and predPartc: (partWidthC)x(partHeightC) arrays of
prediction chroma samples, one for each of the chroma components Cb and Cr.

For macroblocks or partitions with predFlagl.0 equal to 1 in P and SP slices, the following applies.

— If weighted pred flag is equal to 0, the default weighted sample prediction process as described in subclause
8.4.2.3.1 is invoked with the same inputs and outputs as the process described in this subclause.

— Otherwise (weighted pred flag is equal to 1), the explicit weighted prediction process as described in subclause
8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this subclause.

For macroblocks or partitions with predFlagl.0 or predFlagl.1 equal to 1 in B slices, the following applies.

— If weighted bipred idc is equal to 0, the default weighted sample prediction process as described in subclause
8.4.2.3.1 is invoked with the same inputs and outputs as the process described in this subclause.

— Otherwise, if weighted bipred idc is equal to 1, the explicit weighted sample prediction process as described in
subclause 8.4.2.3.2, for macroblocks or partitions with predFlagL0 or predFlagl.1 equal to 1 with the same inputs
and outputs as the process described in this subclause.

— Otherwise (weighted bipred_idc is equal to 2), the following applies.

— If predFlagL0 is equal to 1 and predFlagL1 is equal to 1, the implicit weighted sample prediction as described
in subclause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this subclause.

ITU-T Rec. H.264 (11/2007) 165

— Otherwise (predFlaglL0 or predFlagl.1 are equal to 1 but not both), the default weighted sample prediction
process as described in subclause 8.4.2.3.1 is invoked with the same inputs and outputs as the process
described in this subclause.

8.4.2.3.1 Default weighted sample prediction process

Input to this process are the same as specified in subclause 8.4.2.3.

Output of this process are the same as specified in subclause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies.

— If the luma sample prediction values predPart [x, y] are derived, the following applies with C set equal to L, x set
equal to 0 .. partWidth - 1, and y set equal to O .. partHeight - 1.

— Otherwise, if the chroma Cb component sample prediction values predPartc,[X,y] are derived, the following
applies with C set equal to Cb, x set equal to 0 .. partWidthC - 1, and y set equal to 0 .. partHeightC - 1.

— Otherwise (the chroma Cr component sample prediction values predPartc[x,y] are derived), the following
applies with C set equal to Cr, x set equal to 0 .. partWidthC - 1, and y set equal to 0 .. partHeightC - 1.

The prediction sample values are derived as follows.

— IfpredFlagL0 is equal to 1 and predFlagL1 is equal to 0

predPartc[x, y | = predPartLO¢[x, y | (8-275)

— Otherwise, if predFlagL0 is equal to 0 and predFlagL1 is equal to 1

predPartc[x, y]= predPartL1[X, y] (8-276)

— Otherwise (predFlagl.0 and predFlagl.1 are equal to 1),

predPartc[x, y] = (predPartLOc[x, y] + predPartL1c[x,y]+ 1) >> 1. (8-277)

8.4.2.3.2 Weighted sample prediction process

Input to this process are the same as specified in subclause 8.4.2.3.

Output of this process are the same as specified in subclause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies.

— If the luma sample prediction values predPart; [x, y] are derived, the following applies with C set equal to L, x set
equal to 0 .. partWidth - 1, and y set equal to O .. partHeight - 1.

— Otherwise, if the chroma Cb component sample prediction values predPartc,[X,y] are derived, the following
applies with C set equal to Cb, x set equal to 0 .. partWidthC - 1, and y set equal to 0 .. partHeightC - 1.

— Otherwise (the chroma Cr component sample prediction values predPartc,[x, y] are derived), the following applies
with C set equal to Cr, x set equal to 0 .. partWidthC - 1, and y set equal to O .. partHeightC - 1.

The prediction sample values are derived as follows.

— If the predFlagL0 is equal to 1 and predFlagL1 is equal to 0, the final predicted sample values predPartc[x, y | are
derived by

if(logWD¢e>=1)
predPartc[x, y] = Clipl(((predPartLOc[X, y] * woc + 2°6"Pc ') >> 1ogWD¢) + 0qc)

else (8-278)
predPartc[x, y] = Cliplc(predPartLOc[X, y] * Woc + 0gc)

166 ITU-T Rec. H.264 (03/2005)

— Otherwise, if the predFlagl0 is equal to 0 and predFlaglL1 is equal to 1, the final predicted sample values
predPartc[x, y] are derived by

if(logWDe>=1)
predPartc[x, y] = Cliplo(((predPartL1c[x,y] * wic + 2°8"Pc ') >> 1ogWD¢) + 01¢)

else (8-279)
predPartc[x, y] = Cliplc(predPartL1¢c[X,y | * wic + 0ic)

— Otherwise (both predFlagL0 and predFlagl.1 are equal to 1), the final predicted sample values predPartc[x, y | are
derived by

predPartc[x, y] = Clipl(((predPartLOc[X, y] * woc + predPartL1c[x, y] * wyc + 2'°¢VPc) >>
(logWDc+ 1))+ ((0opctoct1)>>1)) (8-280)

8.4.3 Derivation processfor prediction weights

Inputs to this process are

— the reference indices refldxL0 and refldxL1

— the prediction utilization flags predFlagL0 and predFlagL1
Outputs of this process are

— variables for weighted prediction logWDc, Woc, Wic, 0Ooc, 01c With C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr

For C being replaced by L and, when ChromaArrayType is not equal to 0, Cb and Cr, the variables logWD¢, woc, Wic,
0oc, 01 are derived as follows.

— If weighted bipred _idc is equal to 2 and the (slice_type % 5) is equal to 1, implicit mode weighted prediction is
used as follows.

logWDc = 5 (8-281)
00c=0 (8-282)
01c=0 (8-283)

and woc and wc are derived as follows.

— The variables currPicOrField, pic0, and picl are derived as follows:

- If field pic flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

— currPicOrField is the field of the current picture CurrPic that has the same parity as the current
macroblock.

— The variable picO is derived as follows.

— If refldxLO % 2 is equal to 0, picO is the field of RefPicListO[refldxL0 /2] that has the same
parity as the current macroblock.

— Otherwise (refldxL0 % 2 is not equal to 0), picO is the field of RefPicListO[refldxL0 /2] that
has the opposite parity of the current macroblock.

— The variable picl is derived as follows.

— IfrefldxLL1 % 2 is equal to 0, picl is the field of RefPicList1[refldxL1 /2] that has the same
parity as the current macroblock.

— Otherwise (refldxL1 % 2 is not equal to 0), picl is the field of RefPicListl[refldxL1 /2] that
has the opposite parity of the current macroblock.

- Otherwise (field pic flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField
is the current picture CurrPic, picl is RefPicList1[refldxL1], and picO is RefPicListO[refldxLO0].

ITU-T Rec. H.264 (11/2007) 167

— The variables tb, td, tx, and DistScaleFactor are derived from the values of currPicOrField, pic0, picl using
Equations 8-206, 8-207, 8-202, and 8-203, respectively.

— If DiffPicOrderCnt(picl, picO) is equal to 0 or one or both of picl and picO is marked as "used for long-term
reference" or (DistScaleFactor >> 2) <-64 or (DistScaleFactor >> 2) > 128, wyc and wc are derived as

Woc =32 (8-284)

wic =32 (8-285)
- Otherwise,

woc = 64 — (DistScaleFactor >> 2) (8-286)

wic = DistScaleFactor >> 2 (8-287)

— Otherwise (weighted pred_flag is equal to 1 in slices with (slice_type % 5) equal to 0 or 3 or weighted bipred_idc
equal to 1 in slices with (slice_type % 5) equal to 1), explicit mode weighted prediction is used as follows.

- The variables refldxLOWP and refldxL1 WP are derived as follows.

— If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

refldxLOWP = refldxL0 >> 1 (8-288)

refldxL1WP = refldxL1 >> 1 (8-289)

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

refldxLOWP = refldxL0 (8-290)

refldxL1WP = refldxLL1 (8-291)

— The variables logWD¢, woyc, Wic, 0gc, and o;c are derived as follows.

— IfCisequal to L for luma samples

logWD¢ = luma_log2 weight denom (8-292)
woc = luma_weight 10[refldxLOWP] (8-293)
wic = luma_weight 11[refldxL1WP] (8-294)
0gc = luma_offset 10[refldxLOWP] * (1 << (BitDepthy —8)) (8-295)
01c = luma_offset 11 refldxL1WP] * (1 << (BitDepthy —8)) (8-296)

— Otherwise (C is equal to Cb or Cr for chroma samples, with iCbCr = 0 for Cb, iCbCr = 1 for Cr),

logWDc = chroma log2 weight denom (8-297)

woc = chroma_weight 10[refldxLOWP][iCbCr] (8-298)

168 ITU-T Rec. H.264 (03/2005)

wic = chroma_weight 11[refldxL1WP][iCbCr] (8-299)

0gc = chroma_offset 10[refldxLOWP][iCbCr | * (1 << (BitDepthc — 8)) (8-300)

0)c = chroma_offset 11[refldxL1WP][iCbCr | * (1 << (BitDepthc — 8)) (8-301)

When explicit mode weighted prediction is used and predFlaglLO and predFlagl.l are equal to 1, the following
constraint shall be obeyed for C equal to L and, when ChromaArrayType is not equal to 0, Cb and Cr

~128 <= woc + Wic <= ((logWD¢ == 7)?127: 128) (8-302)

NOTE - For implicit mode weighted prediction, weights woc and w¢ are each guaranteed to be in the range of -64..128 and the
constraint expressed in Equation 8-302, although not explicitly imposed, will always be met. For explicit mode weighted
prediction with logWDc equal to 7, when one of the two weights wyc or wyc is inferred to be equal to 128 (as a consequence of
luma_weight 10 flag, luma weight 11 flag, chroma weight 10 flag, or chroma weight 11 flag equal to 0), the other weight
(Wic or woc) must have a negative value in order for the constraint expressed in Equation 8-302 to hold (and therefore the other
flag luma_weight 10 flag, luma weight 11 flag, chroma weight 10 flag, or chroma weight 11 flag must be equal to 1).

8.5 Transform coefficient decoding process and picture construction process prior to deblocking
filter process

Inputs to this process are Intral6x16DCLevel (if available), Intral6x16ACLevel (if available), CbIntral6x16DCLevel
(if available), CbIntral6x16ACLevel (if available), Crintral6x16DCLevel (if available), Crintral6x16ACLevel (if
available), LumaLevel (if available), LumaLevel8x8 (if available), ChromaDCLevel (if available), ChromaACLevel (if
available), CbLevel (if available), CrLevel (if available), CbLevel8x8 (if available), CrLevel8x8 (if available), and
available Inter or Intra prediction sample arrays for the current macroblock for the applicable components pred; , predcy,
or predc;.
NOTE 1 — When decoding a macroblock in Intra_4x4 (or Intra_8x8) prediction mode, the luma component of the macroblock
prediction array may not be complete, since for each 4x4 (or 8x8) luma block, the Intra 4x4 (or Intra_8x8) prediction process for
luma samples as specified in subclause 8.3.1 (or 8.3.2) and the process specified in this subclause are iterated. When
ChromaArrayType is equal to 3, the Cb and Cr component of the macroblock prediction array may not be complete for the same
reason.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable
components S’, S’cy, or S’¢;-
NOTE 2 — When decoding a macroblock in Intra_4x4 (or Intra_8x8) prediction mode, the luma component of the macroblock
constructed sample arrays prior to the deblocking filter process may not be complete, since for each 4x4 (or 8x8) luma block, the
Intra_4x4 (or Intra_8x8) prediction process for luma samples as specified in subclause 8.3.1 (or 8.3.2) and the process specified
in this subclause are iterated. When ChromaArrayType is equal to 3, the Cb and Cr component of the macroblock constructed
sample arrays prior to the deblocking filter process may not be complete for the same reason.

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P_Skip or B_Skip, all values of LumaLevel, LumaLevel8x8, CbLevel,
CbLevel8x8, CrLevel, CrLevel8x8, ChromaDCLevel, ChromaACLevel are set equal to 0 for the current macroblock.

85.1 Specification of transform decoding process for 4x4 luma residual blocks
This specification applies when transform_size 8x8 flag is equal to 0.

When the current macroblock prediction mode is not equal to Intra_16x16, the variable Lumalevel contains the levels
for the luma transform coefficients. For a 4x4 luma block indexed by luma4x4Blkldx = 0..15, the following ordered
steps are specified.

1. The inverse transform coefficient scanning process as described in subclause 8.5.6 is invoked with
Lumal evel[luma4x4Blkldx] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.11 is invoked with ¢
as the input and r as the output.

3. When gqpprime_y_zero_transform_ bypass_flag is equal to 1, QP'y is equal to 0, the macroblock prediction mode
is equal to Intra 4x4, and Intra4x4PredMode[luma4x4Blkldx] is equal toO or 1, the intra residual
transform-bypass decoding process as specified in subclause 8.5.14 is invoked with nW set equal to 4, nH set
equal to 4, horPredFlag set equal to Intra4x4PredMode[luma4x4Blkldx], and the 4x4 array r as the inputs, and
the output is a modified version of the 4x4 array r.

ITU-T Rec. H.264 (11/2007) 169

4. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the
input and the output being assigned to (xO, yO).

5. The 4x4 array u with elements u;; for i, j = 0..3 is derived as

u;; = Cliply(pred [XO +j, yO +1i]+13) (8-303)

When qpprime y_zero_transform bypass_flag is equal to 1 and QP'y is equal to 0, the bitstream shall not
contain data that result in a value of u; as computed by Equation 8-303 that is not equal to
pred [XO +j,yO +1i] + 1.

6. The picture construction process prior to deblocking filter process in subclause 8.5.13 is invoked with u and
luma4x4BIlkIdx as the inputs.

85.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode

When the current macroblock prediction mode is equal to Intra 16x16, the variables Intral6x16DCLevel and
Intral6x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds
in the following ordered steps:

1. The 4x4 luma DC transform coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse transform coefficient scanning process as described in subclause 8.5.6 is invoked with
Intral6x16DCLevel as the input and the two-dimensional array c as the output.

b. The scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type
as specified in subclause 8.5.9 is invoked with BitDepthy, QP'y, and c as the input and dcY as the output.

2. The 16x16 array rMb is derived by processing the 4x4 luma blocks indexed by luma4x4Blkldx = 0..15, and for
each 4x4 luma block, the following ordered steps are specified.

a. The variable lumalist, which is a list of 16 entries, is derived. The first entry of lumaList is the
corresponding value from the array dcY. Figure 8-6 shows the assignment of the indices of the array dcY to
the luma4x4BIkIdx. The two numbers in the small squares refer to indices i and j in dcYj;, and the numbers in
large squares refer to luma4x4BlkIdx.

Figure 8-6 — Assignment of theindices of dcY to lumadx4Blkldx

The elements in lumaList with index k = 1..15 are specified as
lumaList[k] = Intral6x16ACLevel[luma4x4BIkldx][k- 1] (8-304)

b. The inverse transform coefficient scanning process as described in subclause 8.5.6 is invoked with lumaList
as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.11 is invoked
with ¢ as the input and r as the output.

170 ITU-T Rec. H.264 (03/2005)

d. The position of the upper-left sample of a 4x4 luma block with index luma4x4BIkldx inside the macroblock
is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx
as the input and the output being assigned to (xO, yO).

e. The elements rMb] x, y] of the 16x16 array rMb with x = x0..xO + 3 and y = yO..yO + 3 are derived by

rMb[xO +j,yO +i]=r; (8-305)

3. When gpprime_y zero_transform_bypass_flag is equal to 1, QP'y is equal to 0, and Intral6x16PredMode is
equal to 0 or 1, the intra residual transform-bypass decoding process as specified in subclause 8.5.14 is invoked
with nW set equal to 16, nH set equal to 16, horPredFlag set equal to Intral6x16PredMode, and the 16x16 array
rMb as the inputs, and the output is a modified version of the 16x16 array rMb.

4. The 16x16 array u with elements u;; for i, j = 0..15 is derived as

u; = Cliply(predi[j,1]+rMb[j,1]) (8-306)

When qpprime_y zero_ transform bypass flag is equal to 1 and QP'y is equal to 0, the bitstream shall not
contain data that result in a value of u; as computed by Equation 8-306 that is not equal to
predy[j, i1+ tMb[j, i].

5. The picture construction process prior to deblocking filter process in subclause 8.5.13 is invoked with u as the
input.

8.5.3 Specification of transform decoding process for 8x8 luma residual blocks

This specification applies when transform_size 8x8 flag is equal to 1.

The variable Lumalevel8x8[luma8x8BIkIdx] with luma8x8BlkIdx = 0..3 contains the levels for the luma transform
coefficients for the luma 8x8 block with index luma8x8BIkIdx.

For an 8x8 luma block indexed by luma8x8BlkIdx = 0..3, the following ordered steps are specified.

1.

The inverse scanning process for 8x8 luma transform coefficients as described in subclause 8.5.7 is invoked with
LumaLevel8x8[luma8x8Blkldx] as the input and the two-dimensional array c as the output.

The scaling and transformation process for residual 8x8 blocks as specified in subclause 8.5.12 is invoked with c as
the input and r as the output.

When qpprime y zero_ transform bypass flag is equal to 1, QP'y is equal to 0, the macroblock prediction mode is
equal to Intra_8x8, and Intra8x8PredMode[luma8x8BIlkldx] is equal to 0 or 1, the intra residual transform-bypass
decoding process as specified in subclause 8.5.14 is invoked with nW set equal to 8, nH set equal to 8, horPredFlag
set equal to Intra8x8PredMode[luma8x8Blkldx], and the 8x8 array r as the inputs, and the output is a modified
version of the 8x8 array r.

The position of the upper-left sample of an 8x8 luma block with index luma8x8BIlkIdx inside the macroblock is
derived by invoking the inverse 8x8 luma block scanning process in subclause 6.4.5 with luma8x8BlkIdx as the
input and the output being assigned to (xO, yO).

The 8x8 array u with elements u;; for i, j = 0..7 is derived as

u;; = Cliply(pred [xO +j, yO +i]+15) (8-307)

When gpprime_y_zero_transform_bypass flag is equal to 1 and QP'y is equal to 0, the bitstream shall not contain
data that result in a value of u;; as computed by Equation 8-307 that is not equal to pred; [xO +j, yO +i] +1;.

The picture construction process prior to deblocking filter process in subclause 8.5.13 is invoked with u and
luma8x8BIkIdx as the inputs.

85.4 Specification of transform decoding process for chroma samples

This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is not equal to 0.

Depending on ChromaArrayType, the following applies.

If ChromaArrayType is equal to 3, the transform decoding process for chroma samples with ChromaArrayType
equal to 3 as specified in subclause 8.5.5 is invoked.

ITU-T Rec. H.264 (11/2007) 171

— Otherwise (ChromaArrayType is not equal to 3), the following text specifies the transform decoding process for
chroma samples.

For each chroma component, the variables ChromaDCLevel[iCbCr | and ChromaACLevel[iCbCr], with iCbCr set
equal to 0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform
coefficients.

Let the variable numChroma4x4Blks be set equal to (MbWidthC / 4) * (MbHeightC / 4).
For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1. The numChroma4x4Blks chroma DC transform coefficients of the 4x4 chroma blocks of the component indexed
by iCbCr of the macroblock are decoded.

a. Depending on the variable ChromaArrayType, the following applies.

- If ChromaArrayType is equal to 1, the 2x2 array c is derived using the inverse raster scanning process
applied to ChromaDCLevel as follows

3 [ChromaDCLevel[iCbCr][0] ChromaDCLevel[iCbCr][1]} (8-308)

ChromaDCLevel[iCbCr][2] ChromaDCLevel[iCbCr][3]

- Otherwise (ChromaArrayType is equal to 2), the 2x4 array c is derived using the inverse raster scanning
process applied to ChromaDCLevel as follows

ChromaDCLevel[iCbCr][0] ChromaDCLevel[iCbCr][2]

ChromaDCLevel[iCbCr][1] ChromaDCLevel[iCbCr][5] (8-309)
c= -
ChromaDCLevel[iCbCr][3] ChromaDCLevel[iCbCr][6]

ChromaDCLevel[iCbCr][4] ChromaDCLevel[iCbCr][7]

b. The scaling and transformation process for chroma DC transform coefficients as specified in subclause 8.5.10
is invoked with ¢ as the input and dcC as the output.

2. The (MbWidthC)x(MbHeightC) array rMb is derived by processing the 4x4 chroma blocks indexed by
chroma4x4Blkldx = 0..numChroma4x4Blks — 1 of the component indexed by iCbCr, and for each 4x4 chroma
block, the following ordered steps are specified.

a. The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the
corresponding value from the array dcC. Figure 8-7 shows the assignment of the indices of the array dcC to the
chroma4x4Blkldx. The two numbers in the small squares refer to indices i and j in dcCj;, and the numbers in
large squares refer to chroma4x4BlkIdx.

o] o]
0 1
o]]
2 3
I S 2]
O | 1 4 5
] I 51 I E
2 | 3 6 7
a b

Figure 8-7 — Assignment of theindices of dcC to chromadx4BIkldx:
(@) ChromaArrayType equal to 1, (b) ChromaArrayType equal to 2

172 ITU-T Rec. H.264 (03/2005)

The elements in chromaList with index k = 1..15 are specified as

chromaList[k] = ChromaACLevel[chroma4x4BIkIdx][k—1] (8-310)

b. The inverse scanning process for transform coefficients as specified in subclause 8.5.10 is invoked with
chromalList as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.11 is invoked with
c as the input and r as the output.

d. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the
macroblock is derived by

xO = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8,0) (8-311)

yO = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8, 1) (8-312)

e. The elements r™Mb[x,y] of the (MbWidthC)x(MbHeightC) array rMb with x=x0.xO+3 and
y =yO0..yO + 3 are derived by

rMb[xO +j,yO +i]=r; (8-313)

When qpprime_y_zero_transform_bypass_flag is equal to 1, QP'y is equal to 0, the macroblock prediction mode is
equal to Intra 4x4, Intra 8x8, or Intra_16x16, and intra_chroma pred mode is equal to 1 or 2, the intra residual
transform-bypass decoding process as specified in subclause 8.5.14 is invoked with nW set equal to MbWidthC,
nH set equal to MbHeightC, horPredFlag set equal to (intra_chroma pred mode—1), and the
(MbWidthC)x(MbHeightC) array rMb as the inputs, and the output is a modified version of the
(MbWidthC)x(MbHeightC) array rMb.

The (MbWidthC)x(MbHeightC) array u with elements v for i=0..MbHeight—1 and j=0.MbWidth—1 is
derived as

u; = Cliple(predc[j,i]+rMb[j,1]) (8-314)

When qpprime_y_zero_transform_bypass_flag is equal to 1 and QP'y is equal to 0, the bitstream shall not contain
data that result in a value of u;; as computed by Equation 8-314 that is not equal to predc[j, 1] +1Mb[j,i].

The picture construction process prior to deblocking filter process in subclause 8.5.13 is invoked with u as the
input.

85.5 Specification of transform decoding process for chroma sampleswith ChromaArrayType equal to 3

This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is equal to 3.

Depending on the macroblock prediction mode and transform_size 8x8 flag, the following applies.

If the macroblock prediction mode is equal to Intra 16x16, the transform decoding process for Cb or Cr residual
blocks shall be identical to the process described in subclause 8.5.2 when substituting luma with Cb or Cr,
substituting Intral6x16DCLevel with CbIntral6x16DCLevel or Crintral6x16DCLevel, substituting
Intral6x16ACLevel with CbIntral6x16ACLevel or Crintral6x16ACLevel, and substituting pred; with predc, or
predc;, substituting luma4x4Blkldx with cb4x4BlkIdx or cr4x4BlklIdx, substituting lumaList with CbList or CrList,
substituting BitDepthy with BitDepthc, substituting QP'y with QP'¢, and substituting Cliply with Cliplc.

Otherwise, if transform_size 8x8 flag is equal to 1, the transform decoding process for 8x8 Cb or 8x8 Cr residual
blocks shall be identical to the process described in subclause 8.5.3 when substituting luma with Cb or Cr,
substituting LumaLevel8x8 with CbLevel8x8 or CrLevel8x8, substituting pred; with predc, or predc,, substituting
luma8x8BlkIdx with cb8x8Blkldx or cr8x8BIlkldx, and substituting Cliply with Clip1c.

Otherwise (the macroblock prediction mode is not equal to Intra_16x16 and transform_size 8x8 flag is equal to 0),
the transform decoding process for 4x4 Cb or 4x4 Cr residual blocks shall be identical to the process described in
subclause 8.5.1 when substituting luma with Cb or Cr, substituting LumalLevel with CbLevel or CrLevel,
substituting pred, with predc, or predc,, substituting luma4x4Blkldx with cb4x4Blkldx or cr4x4Blkldx, and
substituting Clip1ly with Clip1¢. During the scaling of 4x4 block transform coefficient levels that is specified within
subclause 8.5.11, which is invoked as part of the process specified in subclause 8.5.1, the input 4x4 array c is

ITU-T Rec. H.264 (11/2007) 173

treated as not relating to a luma residual block coded using Intra 16x16 prediction mode and not relating to a
chroma residual block.

85.6 Inversescanning processfor transform coefficients
Input to this process is a list of 16 values.

Output of this process is a variable ¢ containing a two-dimensional array of 4x4 values. In the case of transform
coefficients, these 4x4 values represent levels assigned to locations in the transform block. In the case of applying the
inverse scanning process to a scaling list, the output variable ¢ contains a two-dimensional array representing a 4x4
scaling matrix.

The inverse scanning process for transform coefficients maps the sequence of transform coefficient levels to the
transform coefficient level positions. Table 8-13 specifies the two mappings: inverse zig-zag scan and inverse field
scan. The inverse zig-zag scan is used for transform coefficients in frame macroblocks and the inverse field scan is used
for transform coefficients in field macroblocks.

The inverse scanning process for scaling lists maps the sequence of scaling list entries to the positions in the
corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-8 illustrates the scans.

R
A
Vol l

Figure 8-8 — 4x4 block scans. (a) Zig-zag scan. (b) Field scan (infor mative)

Table 8-13 provides the mapping from the index idx of input list of 16 elements to indices i and j of the
two-dimensional array c.

Table 8-13 — Specification of mapping of idx to ¢; for zig-zag and field scan

idx 0|12]3|]4|5]6|]7[8]9]10/11]12]13]14]15

219-Zag | Coo | Co1 | €10 | €20 | €11 | Co2 | €03 | Ci2 | €21 | C30 | C31 | €22 | C13 | €23 | €32 | C33

field Co0 | €10 | Co1 | €20 [€30 | C11 | Co1 | C31] Co2 | C12 | €22 | €32 | Co3 | C13 | C23 | C33

8.5.7 Inversescanning processfor 8x8 transform coefficients
Input to this process is a list of 64 values.

Output of this process is a variable ¢ containing a two-dimensional array of 8x8 values. In the case of transform
coefficients, these 8x8 values represent levels assigned to locations in the transform block. In the case of applying the
inverse scanning process to a scaling list, the output variable ¢ contains a two-dimensional array representing an 8x8
scaling matrix.

The inverse scanning process for transform coefficients maps the sequence of transform coefficient levels to the
transform coefficient level positions. Table 8-14 specifies the two mappings: inverse 8x8 zig-zag scan and inverse 8x8

174 ITU-T Rec. H.264 (03/2005)

field scan. The inverse 8x8 zig-zag scan is used for transform coefficients in frame macroblocks and the inverse 8x8
field scan is used for transform coefficients in field macroblocks.

The inverse scanning process for scaling lists maps the sequence of scaling list entries to the positions in the
corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-9 illustrates the scans.

01 56 14»15 27-»28
¥ A ¥ A ¥ A K
2 4 7 13 16 26 29 42

VA X A KA KA
3 8 12 17 25 30 41 43

¥ A ¥ A ¥ 72K
9 11 18 24 31 40 44 53

VA ¥ A KA K AN
10 19 23 32 39 45 52 54

y A ¥ A ¥ A)
20 22 33 38 46 51 55 60 10

VA ¥ A K A K ATy

20/28/36/44/51 59
v
21 34 37 47 50 56 59 61 11

24 [32 [40 |47 |54 |60

AR AEANANE

17 [25 |33 [41 [48 [55 | 61

Vv [v [y [V [V]y

18| 26| 34| 42/ 49/ 56/ 62

¥ A ¥ 7 ¥ 72K BRI

35+»36 48+»49 57+»58 62+»63 12 19 27 35 43 50 57 63

8 15 22 30 38 52
i
14 /21 /29 /37 /45 |53
v
/16/23/31/39/46 58

N« <O
R

\

N hew
‘%
R

a b

Figure 8-9 — 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (infor mative)

Table 8-14 provides the mapping from the index idx of the input list of 64 elements to indices i and j of the
two-dimensional array c.

Table 8-14 — Specification of mapping of idx to ¢; for 8x8 zig-zag and 8x8 field scan

idx 01|23 |]4|5]|6]7|8]9]10]11]12]13|14]15

219-7zag Coo | Co1 | €10 | €20 | €11 | Co2 | Co3 [Ci2 | Co1 | C30 [Ca0 | €31 | Co2 | C13 | Co4 | Cos

field Coo | €10 | €20 | Co1 | C11 | €30 | C40 | €21 | Co2 | €31 | C50 | C60 | €70 | C41 | C12 | Co3

Table 8-14 (continued) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 16 |17 (181912021 |22 123 |24 25|26 |27 [28]|29|30| 31

Z219-Zag | Cia | C23 | C32 | C41 | Cs0 | Co0 | Cs1 | Cap | €33 | Coa | Ci5 | Co6 | Co7 | Ci6 | Ca5 | C34

field €22 | Cs1 [Ce1 [C71 | C30 | C13 | Coa | €23 [C4p | Cs2 | Co2 | C72 | C33 | Ci4 | Cos | Coa

Table 8-14 (continued) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 32 33|34 |35|36 |37 (3839|4041 42|43 |44 |45 | 46 | 47

Z219-Zag | C43 | Csp | Co1 | C70 | C71 | Ce2 | C53 | Caq | C35 | Co6 | €17 | €27 | C36 | Ca5 | Cs4 | Cg3

field C43 | C53 | C63 | C73 | €34 | C15 | Co6 | €25 | C44 | Cs54 | Coa | C74 | C35 | Ci6 | C26 | Ca4s5

ITU-T Rec. H.264 (11/2007) 175

Table 8-14 (concluded) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 48 |49 |50 | 51 | 52 | 53 | 54 |55 |56 |57 |58 |59 6061|6263

Z219-Z8g | C72 | C73 | Coa | Cs5 | Cap | C37 | Ca7 | Cs6 | Co5 | C7a | €75 | Co6 | C57 | C67 | €76 | C77

field Cs5 | C65 | €75 | C36 | Co7 | €17 | Ca6 | €56 | Co6 | C76 | C27 | €37 | C47 | C57 | C67 | C77

8.5.8 Derivation processfor the chroma quantisation parameter s and scaling function

Outputs of this process are:
— QPc: the chroma quantisation parameter for each chroma component Cb and Cr

— QSc: the additional chroma quantisation parameter for each chroma component Cb and Cr required for decoding
SP and SI slices (if applicable)

NOTE 1 — QP quantisation parameter values QPy and QSy are always in the range of —QpBdOffsety to 51, inclusive. QP
quantisation parameter values QP¢ and QS are always in the range of —-QpBdOffsetc to 51, inclusive.

The value of QP¢ for a chroma component is determined from the current value of QPy and the value of
chroma_gp index_offset (for Cb) or second chroma_qp_index_offset (for Cr).

NOTE 2 — The scaling equations are specified such that the equivalent transform coefficient level scaling factor doubles for every
increment of 6 in QPy. Thus, there is an increase in the factor used for scaling of approximately 12 % for each increase of 1 in the
value of QPy.

The value of QP for each chroma component is determined as specified in Table 8-15 based on the index denoted as
qPI.

The variable qPog; for each chroma component is derived as follows.

— If the chroma component is the Cb component, qPogs is specified as

qPottset = chroma_qp_index_offset (8-315)

— Otherwise (the chroma component is the Cr component), qPogs; 1 specified as

qPosset = second_chroma_qp_index_offset (8-316)

The value of qP; for each chroma component is derived as

qP; = Clip3(-QpBdOfisetc, 51, QPy + qPogrer) (8-317)

The value of QP'c for the chroma components is derived as

QP'c = QP¢ + QpBdOfisetc (8-318)

Table 8-15 — Specification of QP as a function of qP,

qP; <30 |30 |31 |32 (33|34 [35[36[37[38[39][40]41 |42)43 |44 |45 |46 |47 |48 |49 |50]51

QPc | =qP; |29 |30 |31 |32 3233|3434 |35[35[36[36|37 3737 [38[38[38[39]39]39]39

When the current slice is an SP or SI slice, QSc is derived using the above process, substituting QPy with QSy and QP¢
with QSC

The 4x4 matrix weightScale(1, j) is specified as follows.
— The variable mblsInterFlag is derived as follows.
— If the current macroblock is coded using Inter macroblock prediction modes, mblsInterFlag is set equal to 1.

— Otherwise (the current macroblock is coded using Intra macroblock prediction modes), mblsinterFlag is set
equal to 0.

176 ITU-T Rec. H.264 (03/2005)

— The variable iYCbCr derived as follows.
— Ifseparate_colour_plane flag is equal to 1, iYCbCer is set equal to colour_plane id.
— Otherwise (separate_colour plane flag is equal to 0), the following applies.
— If the input array c relates to a luma residual block, iYCbCr is set equal to 0.

— Otherwise, if the input array c relates to a chroma residual block and the chroma component is equal to Cb,
1YCDbCer is set equal to 1.

— Otherwise (the input array c relates to a chroma residual block and the chroma component is equal to Cr),
1YCDbCer is set equal to 2.

— The inverse scanning process for transform coefficients as specified in subclause 8.5.6 is invoked with
ScalingList4x4[iYCbCr + ((mblsInterFlag == 1)?3:0)] as the input and the output is assigned to the 4x4
matrix weightScale.

LevelScale(m, i, j) is specified by

LevelScale(m, i, j) = weightScale(i, j) * normAdjust(m, i, j) (8-319)
where
Vo for(i%2,j%2)equalto(0,0),
normAdjust(m,i, j)={v,, for(i%2,j%2)equalto(l,1), (8-320)
v,, otherwise;

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

(10 16 13]
11 18 14
13 20 16
v . (8-321)
14 23 18
16 25 20
|18 29 23]

The 8x8 matrix weightScale8x8(1, j) is specified as follows.
— The variable mblsInterFlag is derived as follows.
— If the current macroblock is coded using Inter macroblock prediction modes, mblsInterFlag is set equal to 1.

— Otherwise (the current macroblock is coded using Intra macroblock prediction modes), mblsinterFlag is set
equal to 0.

— The variable iYCbCr derived as follows.
— If separate_colour plane flag is equal to 1, i'YCbCer is set equal to colour plane id.
— Otherwise (separate_colour_plane flag is equal to 0), the following applies.
— If the input array c relates to a luma residual block, iYCbCr is set equal to 0.

— Otherwise, if the input array c relates to a chroma residual block and the chroma component is equal to Cb,
1YCbCr is set equal to 1.

— Otherwise (the input array c relates to a chroma residual block and the chroma component is equal to Cr),
1YCDbCr is set equal to 2.

— The inverse scanning process for 8x8 transform coefficients as specified in subclause 8.5.7 is invoked with
ScalingList8x8[mblsInterFlag] as the input and the output is assigned to the 8x8 matrix weightScale8x8.

LevelScale(m, i, j) is specified by

LevelScale8x8(m, i, j) = weightScale8x8(1, j) * normAdjust8x8(m, i, j) (8-322)

ITU-T Rec. H.264 (11/2007) 177

where

Vo Tor(i%4,j% 4)equalto(0,0),
v, for(i%2,j%2)equalto(1,1),
v for (1% 4, j% 4) equal to (2,2),

normAdjust8x8(m, i, j)=4 ™ (8-323)

v, for(i%4,j%2)equalto(0,1)or(i% 2,j%4)equalto(1,0),
v, for(i%4,]%4)equalto (0,2)or (i%4,j% 4) equal to (2,0),
v otherwise;

mS5

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

(20 18 32 19 25 24]
22 19 35 21 28 26
26 23 42 24 33 31
V=) (8-324)

28 25 45 26 35 33
32 28 51 30 40 38

36 32 58 34 46 43

8.5.9 Scaling and transformation processfor DC transform coefficientsfor Intra_16x16 macraoblock type

Inputs to this process are
— the variables bitDepth and qP,

— transform coefficient level values for DC transform coefficients of Intra_16x16 macroblocks as a 4x4 array ¢ with
elements c;j, where i and j form a two-dimensional frequency index.

Outputs of this process are 16 scaled DC values for 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY with
elements dcY.

Depending on the values of gpprime_y zero_transform_bypass_flag and QP'y, the following applies.

— Ifqpprime y zero transform bypass_flag is equal to 1 and QP'y is equal to O, the output dcY is derived as
decYj; =c; with i,j=0.3 (8-325)

— Otherwise (qpprime_y_zero_transform_bypass_flag is equal to 0 or QP'y is not equal to 0), the following text of
this process specifies the output.

The inverse transform for the 4x4 luma DC transform coefficients is specified by:

I 1 1 1fcyp € €, Sl 1 1 1

_ 1 1 -1 -1}c, ¢, ¢, c5fl 1 -1 -1 . (8-326)
I =1 =1 Ifcy €y €5y Cp|ll -1 -1 1
I =1 1 =1Ifcy c3 €3 cCy |l -1 1 -1

The bitstream shall not contain data that results in any element fj; of f with i, j = 0..3 that exceeds the range of integer
values from —207 7 bitDePth) 4 H(7+bitDepth) 1 i clusive.

After the inverse transform, the scaling is performed as follows.

— If qP is greater than or equal to 36, the scaled result is derived as

deY;; = (fj; * LevelScale(qP % 6,0,0)) <<(qP/6-6), with i,j=0..3 (8-327)

— Otherwise (qP is less than 36), the scaled result is derived as

deY; = (f; * LevelScale(qP % 6,0,0) + (1 <<(5-qP/6)))>>(6—qP/6), with i,j=0..3 (8-328)

178 ITU-T Rec. H.264 (03/2005)

The bitstream shall not contain data that results in any element dcYj; of dcY with i, j = 0..3 that exceeds the range of
integer values from —2 " PitPePh) 4o (7 bitDeph)_ i olysive.

NOTE 1 — When entropy_coding_mode flag is equal to 0 and gP is less than 10 and profile idc is equal to 66, 77, or 88, the
range of values that can be represented for the elements c;; of ¢ is not sufficient to represent the full range of values of the
elements dcY; of dcY that could be necessary to form a close approximation of the content of any possible source picture by use
of the Intra_16x16 macroblock type.

NOTE 2 — Since the range limit imposed on the elements dcYj; of dcY is imposed after the right shift in Equation 8-328, a larger
range of values must be supported in the decoder prior to the right shift.

8.5.10 Scaling and transformation processfor chroma DC transform coefficients
This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array ¢ with elements c;;, where i and j form a
two-dimensional frequency index.

Outputs of this process are the scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCj;.
The variables bitDepth and gP are set equal to BitDepth and QP'c, respectively.

Depending on the values of qpprime_y zero transform_bypass_flag and QP'y, the following applies.
— Ifgpprime_y zero transform bypass flag is equal to 1 and QP'y is equal to 0, the output dcC is derived as

dcCjj = ¢; with i=0..(MbWidthC /4) — 1 and j = 0..(MbHeightC / 4) — 1. (8-329)

— Otherwise (gpprime_y zero_transform_bypass_flag is equal to 0 or QP'y is not equal to 0), the following applies.

— The transformation process for chroma DC transform coefficients as specified in subclause 8.5.10.1 is
invoked with bitDepth and c as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4)
array f of chroma DC values with elements fj;.

— The scaling process for chroma DC transform coefficients as specified in subclause 8.5.10.2 is invoked with
bitDepth, gP, and f as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array dcY
of scaled chroma DC values with elements dcYj;.

8.5.10.1 Transformation processfor chroma DC transform coefficients

Inputs of this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array ¢ with elements c;;, where i and j form a
two-dimensional frequency index.

Outputs of this process are the DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fj;.
Depending on the variable ChromaArrayType, the inverse transform is specified as follows.

— If ChromaArrayType is equal to 1, the inverse transform for the 2x2 chroma DC transform coefficients is specified
as

I 1 1 1
fo Coo Coi (8-330)
I —1fc, c, |1 -1

— Otherwise, (ChromaArrayType is equal to 2), the inverse transform for the 2x4 chroma DC transform coefficients
is specified as

I 1 1 1fcyp ¢y

f_1 I -1 =1fc¢q ¢ |1
1 =1 =1 ey oy

)
(8-331)

I -1 1 —1fcy cy

8.5.10.2 Scaling processfor chroma DC transform coefficients

Inputs of this process are

— the variables bitDepth and qP

ITU-T Rec. H.264 (11/2007) 179

— DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fj;
Outputs of this process are scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCj;.

The bitstream shall not contain data that results in any element f;; of f with i, j = 0..3 that exceeds the range of integer
values from —207 " PIPePI) 4o 7+ bIDeR_1 Hinclysive,

Scaling is performed depending on the variable ChromaArrayType as follows.

— If ChromaArrayType is equal to 1, the scaled result is derived as

deC, = ((f,* LevelScale(qP %6,0,0)) << (qP/ 6))>>5, with i,j=0,1 (8-332)

- Otherwise (ChromaArrayType is equal to 2), the following applies.

— The variable qPpc is derived as

qPpc=qP +3 (8-333)

— Depending on the value of qPpc, the following applies.

— IfqPpc is greater than or equal to 36, the scaled result is derived as

deC;;= (f;; * LevelScale(qPp %06,0,0)) << (qPpc /6-6), withi=0.3,j=0, 1 (8-334)

— Otherwise (qPpc is less than 36), the scaled result is derived as

deC; = (f, * LevelScale (qPpe % 6,0,0) +279>)y >> (6 —qP,. /6), with i=0..3,j=0,1 (8-335)

The bitstream shall not contain data that results in any element dcC;; of dcC with i, j = 0..3 that exceeds the range of
integer values from —2 " PPePh) 4o (7 *bitDeph)_ i olysive.

NOTE 1 — When entropy_coding mode flag is equal to 0 and qP is less than 4 and profile_idc is equal to 66, 77, or 88, the range
of values that can be represented for the elements c;; of ¢ in subclause 8.5.10.1 may not be sufficient to represent the full range of
values of the elements dcC;; of dcC that could be necessary to form a close approximation of the content of any possible source
picture.

NOTE 2 - Since the range limit imposed on the elements dcCj; of dcC is imposed after the right shift in Equation 8-332 or 8-335,
a larger range of values must be supported in the decoder prior to the right shift.

8.5.11 Scaling and transfor mation processfor residual 4x4 blocks

Input to this process is a 4x4 array ¢ with elements c;; which is either an array relating to a residual block of the luma
component or an array relating to a residual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array r with elements r;;.
The variable bitDepth is derived as follows.

— If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthy.

— Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthc.
The variable sMbFlag is derived as follows.

- If mb_type is equal to SI or the macroblock prediction mode is equal to Inter in an SP slice, sMbFlag is set equal
to1,

- Otherwise (mb_type not equal to SI and the macroblock prediction mode is not equal to Inter in an SP slice),
sMbFlag is set equal to 0.

The variable gP is derived as follows.

— If the input array c relates to a luma residual block and sMbFlag is equal to 0

gP =QP'y (8-336)

— Otherwise, if the input array c relates to a luma residual block and sMbFlag is equal to 1

qP = QSy (8-337)

180 ITU-T Rec. H.264 (03/2005)

— Otherwise, if the input array c relates to a chroma residual block and sMbFlag is equal to 0

qP = QP (8-338)

— Otherwise (the input array c relates to a chroma residual block and sMbFlag is equal to 1),

qP = QSc (8-339)

Depending on the values of qpprime_y zero transform_bypass_flag and QP'y, the following applies.

— Ifgpprime_y zero transform_bypass_flag is equal to 1 and QP'y is equal to 0, the output r is derived as

rj=c; with i,j=0.3 (8-340)

— Otherwise (qpprime_y_zero_transform_bypass_flag is equal to 0 or QP'y is not equal to 0), the following applies.

— The scaling process for residual 4x4 blocks as specified in subclause 8.5.11.1 is invoked with bitDepth, P,
and c as the inputs and the output is assigned to the 4x4 array d of scaled transform coefficients with
elements dj;.

— The transformation process for residual 4x4 blocks as specified in subclause 8.5.11.2 is invoked with bitDepth
and d as the inputs and the output is assigned to the 4x4 array r of residual sample values with elements r;;.

85.11.1 Scaling processfor residual 4x4 blocks
Inputs of this process are
— the variables bitDepth and qP

— a4x4 array c with elements c¢;; which is either an array relating to a residual block of luma component or an array
relating to a residual block of a chroma component

Output of this process is a 4x4 array of scaled transform coefficients d with elements d;;.

The bitstream shall not contain data that results in any element c;; of ¢ with i, j = 0..3 that exceeds the range of integer
values from —27 " PPePh) ¢ 7+ bitDepth)_y 4 clysive.

Scaling of 4x4 block transform coefficient levels cjj proceeds as follows.
— Ifall of the following conditions are true

— 1iisequalto 0

— jisequalto O

— c relates to a luma residual block coded using Intra 16x16 prediction mode or c relates to a chroma residual
block

the variable dy is derived by

doo = oo (8-341)

— Otherwise, the following applies.

— If P is greater than or equal to 24, the scaled result is derived as follows

d;j = (¢; * LevelScale(qP % 6, 1, j)) << (qP / 6 — 4), with i,j = 0..3 except as noted above (8-342)

— Otherwise (qP is less than 24), the scaled result is derived as follows

d; = (¢; *LevelScale(qP % 6,1, j) + 276y 55 (4—qP/6), withi,j=0..3 except as noted above (8-343)

The bitstream shall not contain data that results in any element d;j of d with i, j = 0..3 that exceeds the range of integer
values from —2(7 " PIPP) o (7 bitDepth) _ 1 Hinclusive.

ITU-T Rec. H.264 (11/2007) 181

8.5.11.2 Transformation processfor residual 4x4 blocks

Inputs of this process are

— the variable bitDepth

— a4x4 array of scaled transform coefficients d with elements dj

Outputs of this process are residual sample values as 4x4 array r with elements r;;.

The bitstream shall not contain data that results in any element d;j of d with i, j = 0..3 that exceeds the range of integer
values from —2(7 " PIPP) o (7 bitDepth) _ 1 Hinclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform
as follows.

A set of intermediate values is computed as follows.

ep=djtdp, with i=0.3 (8-344)
e =dip—dp, with i=0.3 (8-345)
ep=(d;>>1)-ds, with i=0.3 (8-346)
ez=dj+(d3>>1), with i=0.3 (8-347)

The bitstream shall not contain data that results in any element e; of e with i, j = 0..3 that exceeds the range of integer
values from —2(7 PP 4o 270D _q nclysive.

Then, the transformed result is computed from these intermediate values as follows.

fio=ejptes, with i=0.3 (8-348)
fiy =e; tep, with 1=0.3 (8-349)
fo=¢€;—¢ep, with 1=0.3 (8-350)
fz=¢eo—e3, with 1=0.3 (8-351)

The bitstream shall not contain data that results in any element f;; of f with i, j = 0..3 that exceeds the range of integer
values from —207 7 PitDePth) 4 H(7+bitDepth) _ 1 ipolusive.

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows.

goj =fo; + 55, with j=0.3 (8-352)
g =fo;—f, with j=0.3 (8-353)
g =(f;>>1)—fy, with j=0.3 (8-354)
gy =fi+(fy>>1), with j=0.3 (8-355)

182 ITU-T Rec. H.264 (03/2005)

The bitstream shall not contain data that results in any element g;; of g with i, j = 0..3 that exceeds the range of integer
values from —207 PP 4o 270D _q nclysive.

Then, the transformed result is computed from these intermediate values as follows.

hoj = goj + g3, with j=0.3 (8-356)
hy; =g+ g with j=0.3 (8-357)
hyj=gij— g, with j=0.3 (8-358)
hsj = goj — g3, with j=0.3 (8-359)

The bitstream shall not contain data that results in any element h;; of h with i, j = 0..3 that exceeds the range of integer
values from —207 " PitPepth) ¢ p(7+bitDepth) _ 33 iy clusive.

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce
an array of transformed samples, the final constructed residual sample values is derived as

r,=(h;+2°)>>6 with i,j=0.3 (8-360)

8.5.12 Scaling and transfor mation processfor residual 8x8 blocks

Input to this process is an 8x8 array ¢ with elements c;; which is either an array relating to an 8x8 residual block of the
luma component or, when ChromaArrayType is equal to 3, an array relating to an 8x8 residual block of a chroma
component.

NOTE 1 — When separate_colour plane flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each coded picture (prior to the final assignment of the decoded picture to a
particular luma or chroma picture array according to the value of colour_plane_id).

Outputs of this process are residual sample values as 8x8 array r with elements r;;.

The variables bitDepth and P are derived as follows.

— If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthy and QP is set equal to
QPYy.

— Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthc and QP is
set equal to QP'c.

NOTE 2 — When separate_colour_plane flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each colour component of a picture.

Depending on the values of gpprime y zero transform bypass flag and QP'y, the following applies.

— Ifgpprime_y zero transform_bypass flag is equal to 1 and QP'y is equal to 0, the output r is derived as

Ij; = Gjj with I,J =0..7 (8-361)

— Otherwise (qpprime_y zero_transform_bypass_flag is equal to 0 or QP'Y is not equal to 0), the following applies.

— The scaling process for residual 8x8 blocks as specified in subclause 8.5.12.1 is invoked with bitDepth, qP,
and c as the inputs and the output is assigned to the 8x8 array d of scaled transform coefficients with
elements dj;.

— The transformation process for residual 8x8 blocks as specified in subclause 8.5.12.2 is invoked with bitDepth
and d as the inputs and the output is assigned to the 8x8 array r of residual sample values with elements r;;.

8.5.12.1 Scaling processfor residual 8x8 blocks
Inputs of this process are
— the variables bitDepth and qP

— an 8x8 array c with elements c;; which is either an array relating to a residual block of luma component or an array
relating to a residual block of a chroma component

ITU-T Rec. H.264 (11/2007) 183

Output of this process is an 8x8 array of scaled transform coefficients d with elements d;;.

The bitstream shall not contain data that results in any element c;; of ¢ with i, j = 0..7 that exceeds the range of integer
values from —207 " PiPepth) ¢ (7 +bitDepth)_y 3 clysive.

The scaling process for 8x8 block transform coefficient levels c;; proceeds as follows.

— If qP is greater than or equal to 36, the scaled result is derived as

dij = (c;j * LevelScale8x8(qP % 6,1,j)) << (qP /6 —6), with i,j =0..7 (8-362)

— Otherwise (qP is less than 36), the scaled result is derived as

dij = (cij * LevelScale8x8(qP % 6, i, j)) + 2> ¥¥%) >> (6 — qP /6), with i,j = 0..7 (8-363)

The bitstream shall not contain data that results in any element d;; of d with i, j = 0..7 that exceeds the range of integer
values from -207 " PP 4o (7 +biDepth)_1 i clysive.
8.5.12.2 Transformation processfor residual 8x8 blocks

Inputs of this process are

— the variable bitDepth

— an 8x8 array of scaled transform coefficients d with elements dj

Outputs of this process are residual sample values as 8x8 array r with elements r;;.

The bitstream shall not contain data that results in any element d;j of d with i, j = 0..7 that exceeds the range of integer
values from —2(7 " PIPP) o (7 bitDepth) _ 1 Hinclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform
as follows.

— Aset of intermediate values e;; is derived by

el =d +dy, with i=0..7 (8-364)
en =—di +dis—dip— (diy >> 1), with i=0..7 (8-365)
en =di— dy, with i=0.7 (8-366)
e =di; +dip—diy — (dy >> 1), with i=0..7 (8-367)
ey =(dp>>1)—dg, with i=0..7 (8-368)
eis =—diy +dip + dis + (dis >> 1), with i=0..7 (8-369)
e =dp+(dig>> 1), with i=0.7 (8-370)
e =di +dis + diy + (dy >> 1), with i=0..7 (8-371)

— A second set of intermediate results fj; is computed from the intermediate values e;; as

fio = eio + €i6, with 1=0..7 (8-372)

fil =¢; t (617 >> 2), with 1=0..7 (8-373)

184 ITU-T Rec. H.264 (03/2005)

f, =ep + ey, with 1=0..7

fis=e; +(e5>>2), with 1=0..7

fi4 = €pp — Cis, with 1=0..7

fi5 = (ei3 >> 2) — €is, with 1=0..7

fis = €j0— €5, with 1=0..7

fi7 = €7 — (eil >> 2), with 1=0..7

— Then, the transformed result g;; is computed from these intermediate values fj; as

gio ="t + fi7, with 1=0..7

gy = fip +fis, with i=0..7

gn="fy+f3, with i=0.7

gz = fig + £y, with i=0..7

gis = fi(, — fils with 1=0..7

gis = fiu — i3, with 1=0..7

gis = fip — fis, with i=0..7

g7 = fio— fi7, with i=0.7

(8-374)

(8-375)

(8-376)

(8-377)

(8-378)

(8-379)

(8-380)

(8-381)

(8-382)

(8-383)

(8-384)

(8-385)

(8-386)

(8-387)

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as

follows.

— A setof intermediate values h;; is computed from the horizontally transformed value g;; as

hOj = ng + g4ja with J =0.7

hij=— gy + g5 — g — (g >> 1), with j=0.7

h2j = ng — g4j’ with J =0.7

hs; = gi; + g7 — g5 — (g3 >> 1), with j=0.7

hs;=—gi; + g7 + g5 T (g5 >> 1), with j=0..7

I TU-T Rec. H.264 (11/2007)

(8-388)

(8-389)

(8-390)

(8-391)

(8-392)

(8-393)

185

hej =g + (g6 >> 1), with j=0..7

hy; = g3+ gs; + g+ (g;>> 1), with j=0.7

A second set of intermediate results k;; is computed from the intermediate values h;; as

k()j = hOj + héj, with J =0..7

kij =hy; + (hy >>2), with j=0.7

kZJ = hzJ + h4_|, with J =0.7

ks; =hy; + (hs;>>2), with j=0..7

k4j = h2j — h4j, with _] =0.7

kéj = h()j — h6j9 with _] =0..7

k7; =hg;— (hy; >>2), with j=0.7

Then, the transformed result m;; is computed from these intermediate values k;; as

my; = kOj + k7j, with J =0..7

my; = k2j + k5j, with J =0..7

my; = k4J + k3j, with J =0.7

mz; = k6j + k]j, with J =0..7

my; = k6j — k]j, with _] =0..7

ms; = k4j - k3j, with] =0..7

Mg = k2j - ij, with _] =0..7

my; = k()j - k7j, with _] =0..7

(8-394)

(8-395)

(8-396)

(8-397)

(8-398)

(8-399)

(8-400)

(8-401)

(8-402)

(8-403)

(8-404)

(8-405)

(8-406)

(8-407)

(8-408)

(8-409)

(8-410)

(8-411)

The bitstream shall not contain data that results in any element e, fj, g;, hj, or ki for i and j in the range of 0..7,

inclusive, that exceeds the range of integer values from —27 * PPt g 27 +BiIDep) _ 1 “inclysive.

The bitstream shall not contain data that results in any element m;; for i and j in the range of 0..7, inclusive, that exceeds

the range of integer values from

72(7 + bitDepth) to 2(7 + bitDepth)

33, inclusive.

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce

an array of transformed samples, the final constructed residual sample values are derived as

186

ITU-T Rec. H.264 (03/2005)

= (my+2°)>>6 with i,j=0.7 (8-412)

8.,5.13 Picture construction processprior to deblocking filter process

Inputs to this process are

a sample array u with elements u;; which is a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block or
a 4x4 luma block or a 4x4 chroma block or an 8x8 luma block or, when ChromaArrayType is equal to 3, an 8x8
chroma block

when u is not a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block, a block index luma4x4BlkIdx
or chroma4x4Blkldx or luma8x8Blkldx or cb4x4BlkIdx or cr4x4BlkIdx or cb8x8BlkIdx or cr8x8BlkIdx

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

When u is a luma block, for each sample u;; of the luma block, the following applies.

Depending on the size of the block u, the following applies.

If uis a 16x16 luma block, the position (xO, yO) of the upper-left sample of the 16x16 luma block inside
the macroblock is set equal to (0, 0) and the variable nE is set equal to 16.

Otherwise, if u is an 4x4 luma block, the position of the upper-left sample of the 4x4 luma block with index
luma4x4BIlkIdx inside the macroblock is derived by invoking the inverse 4x4 luma block scanning process in
subclause 6.4.3 with luma4x4Blkldx as the input and the output being assigned to (xO,yO), and the
variable nE is set equal to 4.

Otherwise (u is an 8x8 luma block), the position of the upper-left sample of the 8x8 luma block with index
luma8x8BlkIdx inside the macroblock is derived by invoking the inverse 8x8 luma block scanning process in
subclause 6.4.5 with luma8x8Blkldx as the input and the output being assigned to (xO,yO), and the
variable nE is set equal to 8.

Depending on the variable MbaffFrameFlag and the current macroblock, the following applies.

If MbaftFrameFlag is equal to 1 and the current macroblock is a field macroblock

S UxP+xO+j,yP+2*(yO+i)]=u; withi,j=0.nE-1 (8-413)

Otherwise (MbaffFrameFlag is equal to O or the current macroblock is a frame macroblock),

SY[xP+x0+j,yP+yO+i]=u; withi,j=0.nE—1 (8-414)

When u is a chroma block, for each sample u;; of the chroma block, the following applies.

The subscript C in the variable S'c is replaced with Cb for the Cb chroma component and with Cr for the Cr
chroma component.

Depending on the size of the block u, the following applies.

If u is an (MbWidthC)x(MbHeightC) Cb or Cr block, the variable nW is set equal to MbWidthC, the variable
nH is set equal to MbHeightC, and the position (xO, yO) of the upper-left sample of the (nW)x(nH) Cb or Cr
block inside the macroblock is set equal to (0, 0).

Otherwise, if u is a 4x4 Cb or Cr block, the variables nW and nH are set equal to 4 and, depending on the
variable ChromaArrayType, the position of the upper-left sample of a 4x4 Cb or Cr block with index
chroma4x4Blkldx inside the macroblock is derived as follows.

— If ChromaArrayType is equal to 1 or 2, the following applies.

x0O = InverseRasterScan(chroma4x4Blkldx, 4,4, 8,0) (8-415)

yO = InverseRasterScan(chroma4x4Blkldx, 4,4, 8, 1) (8-416)

ITU-T Rec. H.264 (11/2007) 187

— Otherwise (ChromaArrayType is equal to 3), the position of the upper-left sample of the 4x4 Cb block
with index cb4x4Blkldx or the 4x4 Cr block with index cr4x4Blkldx inside the macroblock is derived by
invoking the inverse 4x4 Cb or Cr block scanning process in subclause 6.4.4 with cb4x4BIlkldx or
crdx4BIlkldx as the input and the output being assigned to (XO, yO).

— Otherwise (u is an 8x8 Cb or Cr block when ChromaArrayType is equal to 3), the variables nW and nH are set
equal to 8 and the position of the upper-left sample of the 8x8 Cb block with index cb8x8Blkldx or the Cr
block with index cr8x8BlkIdx inside the macroblock is derived by invoking the inverse 8x8 Cb or Cr block
scanning process in subclause 6.4.6 with cb8x8Blkldx or cr8x8Blkldx as the input and the output being
assigned to (xO, yO).

— Depending on the variable MbaffFrameFlag and the current macroblock, the following applies.

— If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

S'e[(xP / subWidthC) +xO + j, ((yP + SubHeightC — 1) / SubHeightC) + 2 * (yO +1i)] = u;
withi=0.nH—1 and j=0.nW — 1 (8-417)

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S'c[(xP/ subWidthC) +xO +j, (yP / SubHeightC) + yO +i] = u;
withi=0.nH-1 and j=0.nW -1 (8-418)

8.5.14 Intraresidual transform-bypass decoding process

This process is invoked when qpprime_y_zero_transform_bypass_flag is equal to 1, QP'y is equal to 0, the macroblock
prediction mode is equal to Intra_4x4, Intra_8x8, or Intra_16x16, and the applicable intra prediction mode is equal to
the vertical or horizontal mode. The process for the Cb and Cr components is applied in the same way as for the luma
(L or Y) component.

Inputs to this process are
— two variables nW and nH
— avariable horPredFlag

— an (nW)x(nH) array r with elements r;; which is either an array relating to a residual transform-bypass block of the
luma component or an array relating to a residual transform-bypass block of the Cb and Cr component.

Output of this process is a modified version of the (nW)x(nH) array r with elements r;; containing the result of the intra
residual transform-bypass decoding process.

Let f be a temporary (nW)x(nH) array with elements fj;, which are derived by

fi=r; withi=0.nH-1 and j=0.nW -1 (8-419)

Depending on horPredFlag, the following applies.
— IfhorPredFlag is equal to 0, the modified array r is derived by.

i
r,=> f, withi=0.nH-1 and j=0.nW -1 (8-420)
k=0

— Otherwise (horPredFlag is equal to 1), the modified array r is derived by

j
r,=>f, withi=0.nH-1 and j=0.nW -1 (8-421)
k=0

188 ITU-T Rec. H.264 (03/2005)

8.6 Decoding processfor P macrablocksin SP slicesor SI macr oblocks
This process is invoked when decoding P macroblock types in an SP slice type or an SI macroblock type in SI slices.

Inputs to this process are the prediction residual transform coefficient levels and the predicted samples for the current
macroblock.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This subclause specifies the transform coefficient decoding process and picture construction process for P macroblock
types in SP slices and SI macroblock type in SI slices.

NOTE - SP slices make use of Inter predictive coding to exploit temporal redundancy in the sequence, in a similar manner to P
slice coding. Unlike P slice coding, however, SP slice coding allows identical reconstruction of a slice even when different
reference pictures are being used. SI slices make use of spatial prediction, in a similar manner to I slices. SI slice coding allows
identical reconstruction to a corresponding SP slice. The properties of SP and SI slices aid in providing functionalities for
bitstream switching, splicing, random access, fast-forward, fast reverse, and error resilience/recovery.

An SP slice consists of macroblocks coded either as I macroblock types or P macroblock types.
An ST slice consists of macroblocks coded either as I macroblock types or SI macroblock type.

The transform coefficient decoding process and picture construction process prior to deblocking filter process for I
macroblock types in SI slices is invoked as specified in subclause 8.5. SI macroblock type is decoded as described
below.

When the current macroblock is coded as P_Skip, all values of LumaLevel, ChromaDCLevel, ChromaACLevel are set
equal to 0 for the current macroblock.

8.6.1 SP decoding processfor non-switching pictures
This process is invoked, when decoding P macroblock types in SP slices in which sp_for switch_flag is equal to 0.

Inputs to this process are Inter prediction samples for the current macroblock from subclause 8.4 and the prediction
residual transform coefficient levels.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This subclause applies to all macroblocks in SP slices in which sp for switch flag is equal to 0, except those with
macroblock prediction mode equal to Intra 4x4 or Intra_16x16. It does not apply to SI slices.

8.6.1.1 Lumatransform coefficient decoding process

Inputs to this process are Inter prediction luma samples for the current macroblock pred; from subclause 8.4 and the
prediction residual transform coefficient levels, Lumal evel, and the index of the 4x4 luma block luma4x4BlkIdx.

The position of the upper-left sample of the 4x4 luma block with index luma4x4BIlkldx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4Blkldx as the input
and the output being assigned to (X,y).

Let the variable p be a 4x4 array of prediction samples with element p;; being derived as follows.

pij=pred[x+j,y+i] withi,j=0.3 (8-422)

The variable p is transformed producing transform coefficients ¢” according to:

1 1 1 LiPow Po P Pos |l 2 1 1

P = 2 I =1 =2)p, Py P Pi|l I -1 =2 (8-423)
1 -1 -1 1Py Py Pn Pu|fl -1 -1 2
I =2 2 -—1]psy Py Pn Pl -2 I -1

The inverse transform coefficient scanning process as described in subclause 8.5.6 is invoked with
LumaLevel[luma4x4BlkIdx] as the input and the two-dimensional array c¢" with elements c;j" as the output.

The prediction residual transform coefficients ¢’ are scaled using quantisation parameter QPy, and added to the
transform coefficients of the prediction block ¢” with i, j = 0..3 as follows.

¢ = ¢ + (((ci * LevelScale(QPy % 6,1,j) * Aj) <<(QPy/6))>>10) (8-424)

ITU-T Rec. H.264 (11/2007) 189

where LevelScale(m, i, j) is specified in Equation 8-319, and where A;; is specified as:

16 for (i,j)e {(0,0),(0,2),(2,0),(2,2)},
Ay=425 for (i,j)e{(1,1),(1,3),(3,1),(3.3)}, (8-425)
20 otherwise;

The function LevelScale2(m, i, j), used in the formulas below, is specified as:

me fOI' (1’.]) € {(070)7 (072)7 (230)7 (252)}9
LevelScale2(m,i,j) ={w,, for (i,j)e {(1.1),(1,3).(3.1).(3.3)}, (8-426)
w,, otherwise;

where the first and second subscripts of w are row and column indices, respectively, of the matrix specified as:

(13107 5243 8066 |
11916 4660 7490
10082 4194 6554
9362 3647 5825
8192 3355 5243
| 7282 2893 4559

(8-427)

€
I

The resulting sum, c’, is quantised with a quantisation parameter QSy and with i, j = 0..3 as follows.

;= Sign(¢i*) * ((Abs(c;*) * LevelScale2(QSy % 6,1,j) + (1 <<(14+QSy/6)))>>(15+QSy/6))
(8-428)

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.11 is invoked with ¢ as the
input and r as the output.

The 4x4 array u with elements u;; is derived as follows.

u; = Cliply(rj) with i, j = 0.3 (8-429)

The picture construction process prior to deblocking filter process in subclause 8.5.13 is invoked with luma4x4Blkldx
and u as the inputs.

8.6.1.2 Chromatransform coefficient decoding process

Inputs to this process are Inter prediction chroma samples for the current macroblock from subclause 8.4 and the
prediction residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4Blkldx with chroma4x4BlkIdx equal
to 0..3, the following applies.

— The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the macroblock is
derived as follows.

x = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8,0) (8-430)

y = InverseRasterScan(chroma4x4Blkldx, 4,4, 8, 1) (8-431)

190 ITU-T Rec. H.264 (03/2005)

— Let p be a 4x4 array of prediction samples with elements p;; being derived as follows.

pi=predc[x +j,y+i] withi,j=0.3 (8-432)

— The 4x4 array p is transformed producing transform coefficients c’(chroma4x4BIkIdx) using Equation 8-423.

— The variable chromaList, which is a list of 16 entries, is derived. chromaList[O] is set equal to 0. chromaList[k]
with index k = 1..15 are specified as follows.

chromalList[k] = ChromaACLevel[iCbCr][chroma4x4Blkldx [k - 1] (8-433)

— The inverse transform coefficient scanning process as described in subclause 8.5.6 is invoked with chromalList as
the input and the 4x4 array ¢’ as the output.

— The prediction residual transform coefficients ¢’ are scaled using quantisation parameter QPC, and added to the
transform coefficients of the prediction block c? with i, j = 0..3 except for the combination i =0, j = 0 as follows.

¢;° = ¢;’(chroma4x4BIkIdx) + (((¢ * LevelScale(QPc % 6,1,]) * Ay) << (QP¢/6))>>10) (8-434)

— The resulting sum, ¢, is quantised with a quantisation parameter QSc and with i, j = 0..3 except for the
combination i = 0, j = 0 as follows. The derivation of cqy(chroma4x4Blkldx) is described below in this subclause.

¢;(chroma4x4BlkIdx) = (Sign(¢;*) * (Abs(¢;®) * LevelScale2(QS¢ % 6,1,) +
(1<<(14+QSc/6))))>>(15+QSc/6) (8-435)

— The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.11 is invoked with
c(chroma4x4BlkIdx) as the input and r as the output.

— The 4x4 array u with elements u;; is derived as follows.
u;; = Cliple(1;) with1,j=0..3 (8-436)

— The picture construction process prior to deblocking filter process in subclause 8.5.13 is invoked with
chroma4x4BlkIdx and u as the inputs.

The derivation of the DC transform coefficient level cyy(chroma4x4BlkIdx) is specified as follows. The DC transform
coefficients of the 4 prediction chroma 4x4 blocks of the current component of the macroblock are assembled into a 2x2
matrix with elements cqo"(chroma4x4BlkIdx) and a 2x2 transform is applied to the DC transform coefficients as follows

dcp:{l 1}[% OB (1)}{1 1} (8.437)
1 —1]ct (2 @31 -1

The chroma DC prediction residual transform coefficient levels, ChromaDCLevel[iCbCr][k] with k =0..3 are scaled
using quantisation parameter QP, and added to the prediction DC transform coefficients as follows.

de;® = de;” + (((ChromaDCLevel[iCbCr][j * 2 +1i] * LevelScale(QPc % 6, 0, 0) * Agg) <<(QPc/6))>>9)
withi,j=0,1 (8-438)
The 2x2 array dc’, is quantised using the quantisation parameter QS as follows.
de' = (Sign(dc;®) * (Abs(dc;®) * LevelScale2(QSc % 6,0, 0) + (1 <<(15+QSc/6))))>>(16+QSc/6)
withi,j=0, 1 (8-439)

The 2x2 array f with elements fjj and i, j = 0..1 is derived as follows.
1 1 ’ Tl 1
o dey, dey, ' (8-440)
1 =1} dc, dc, 1 -1

ITU-T Rec. H.264 (11/2007) 191

Scaling of the elements fj; of f is performed as follows.

Cooj *2+1)=((f;* LevelScale(QSc % 6,0,0)) << (QSc/6))>>5 withi, j=0, 1 (8-441)

8.6.2 SPand Sl dlice decoding processfor switching pictures

This process is invoked, when decoding P macroblock types in SP slices in which sp_for switch flag is equal to 1 and
when decoding SI macroblock type in SI slices.

Inputs to this process are the prediction residual transform coefficient levels and the prediction sample arrays pred;,
predcp and predc, for the current macroblock.

8.6.2.1 Lumatransform coefficient decoding process

Inputs to this process are prediction luma samples pred; and the luma prediction residual transform coefficient levels,
LumaLevel.

The 4x4 array p with elements p; with i, j = 0..3 is derived as in subclause 8.6.1.1, is transformed according to
Equation 8-423 to produce transform coefficients c®. These transform coefficients are then quantised with the
quantisation parameter QSy, as follows:

¢’ = Sign(¢;?) * ((Abs(¢;?) * LevelScale2(QSy % 6,1,j) +(1<<(14+QSy/6)))>>(15+QSy/6))
with i, j=0.3 (8-442)

The inverse transform coefficient scanning process as described in subclause 8.5.6 is invoked with
LumaLevel[luma4x4BlkIdx] as the input and the two-dimensional array c¢" with elements c;j" as the output.

The 4x4 array ¢ with elements c;; with i, j = 0..3 is derived as follows.

cy=cij t¢;° withi,j=0.3 (8-443)

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.11 is invoked with c as the
input and r as the output.

The 4x4 array u with elements u;; is derived as follows.

u; = Cliply(1) with i, j = 0.3 (8-444)

The picture construction process prior to deblocking filter process in subclause 8.5.13 is invoked with luma4x4Blkldx
and u as the inputs.

8.6.2.2 Chromatransform coefficient decoding process

Inputs to this process are predicted chroma samples for the current macroblock from subclause 8.4 and the prediction
residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4BlkIdx with chroma4x4Blkldx equal
to 0..3, the following applies.

1. The 4x4 array p with elements p; with i, j = 0..3 is derived as in subclause 8.6.1.2, is transformed according to
Equation 8-423 to produce transform coefficients c’(chroma4x4Blkldx). These transform coefficients are then
quantised with the quantisation parameter QS¢, with i, j = 0..3 except for the combination i = 0, j = 0 as follows.
The processing of cy’(chroma4x4BlkIdx) is described below in this subclause.

¢;° = (Sign(¢;"(chroma4x4BlkIdx)) * (Abs(¢;’(chroma4x4BIkIdx)) *
LevelScale2(QSc % 6,1,)+ (1 <<(14+QSc/6))))>>(15+QSc/6) (8-445)
— The variable chromaList, which is a list of 16 entries, is derived. chromaList[O] is set equal to 0. chromaList[k]

with index k = 1..15 are specified as follows.

chromaList[k] = ChromaACLevel[iCbCr][chromad4x4Blkldx [k-1] (8-4406)

192 ITU-T Rec. H.264 (03/2005)

— The inverse transform coefficient scanning process as described in subclause 8.5.6 is invoked with chromaList as
the input and the two-dimensional array c'(chroma4x4Blkldx) with elements c;'(chroma4x4BIkldx) as the
output.

— The 4x4 array c(chroma4x4Blkldx) with elements c;(chroma4x4Blkldx) with i, j = 0.3 except for the
combination i = 0, j = 0 is derived as follows. The derivation of co(chroma4x4BlkIdx) is described below.

¢;j(chroma4x4BlkIdx) = ¢;'(chroma4x4BIkldx) + c;° (8-447)

— The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.11 is invoked with
¢(chroma4x4BlkIdx) as the input and r as the output.

— The 4x4 array u with elements u;; is derived as follows.

uij = Cllplc(I'ij) with 1,] =0.3 (8-448)

— The picture construction process prior to deblocking filter process in subclause 8.5.13 is invoked with
chroma4x4BIklIdx and u as the inputs.

The derivation of the DC transform coefficient level cy(chroma4x4BlkIdx) is specified as follows. The DC transform
coefficients of the 4 prediction 4x4 chroma blocks of the current component of the macroblock,
Coo’(chroma4x4BIkIdx), are assembled into a 2x2 matrix, and a 2x2 transform is applied to the DC transform
coefficients of these blocks according to Equation 8-437 resulting in DC transform coefficients dc;;".

These DC transform coefficients are then quantised with the quantisation parameter QSc, as given by:

de;® = (Sign(de;?) * (Abs(de;) * LevelScale2(QSc % 6,0,0) + (1 << (15+QSc/6))))>>
(16+QSc/6) withi,j=0, 1 (8-449)

The parsed chroma DC prediction residual transform coefficients, ChromaDCLevel[iCbCr][k] with k = 0..3 are added
to these quantised DC transform coefficients of the prediction block, as given by:

de;’ = de;’ + ChromaDCLevel[iCbCr][* 2 +i] withi,j=0, 1 (8-450)

The 2x2 array f with elements fjj and i, j = 0..1 is derived using Equation 8-440.

The 2x2 array f with elements fj; and 1, j = 0..1 is copied as follows.

Coo(j*2+i)="f; withi,j=0, 1 (8-451)

8.7 Deblocking filter process

A conditional filtering process is specified in this subclause that is an integral part of the decoding process which shall
be applied by decoders conforming to the Baseline, Extended, Main, High, High 10, High 4:2:2, and
High 4:4:4 Predictive profiles. For decoders conforming to the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and
CAVLC 4:4:4 Intra profiles, the filtering process specified in this subclause, or one similar to it, should be applied but is
not required.

The conditional filtering process is applied to all NxN (where N=4 or N=28 for luma, N=4 for chroma when
ChromaArrayType is equal to 1 or 2, and N =4 or N = 8 for chroma when ChromaArrayType is equal to 3) block edges
of a picture, except edges at the boundary of the picture and any edges for which the deblocking filter process is
disabled by disable_deblocking_filter idc, as specified below. This filtering process is performed on a macroblock basis
after the completion of the picture construction process prior to deblocking filter process (as specified in subclauses 8.5
and 8.6) for the entire decoded picture, with all macroblocks in a picture processed in order of increasing macroblock
addresses.
NOTE 1 — Prior to the operation of the deblocking filter process for each macroblock, the deblocked samples of the macroblock
or macroblock pair above (if any) and the macroblock or macroblock pair to the left (if any) of the current macroblock are always
available because the deblocking filter process is performed after the completion of the picture construction process prior to
deblocking filter process for the entire decoded picture. However, for purposes of determining which edges are to be filtered
when disable deblocking_ filter idc is equal to 2, macroblocks in different slices are considered not available during specified
steps of the operation of the deblocking filter process.

ITU-T Rec. H.264 (11/2007) 193

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock and
each component, vertical edges are filtered first, starting with the edge on the left-hand side of the macroblock
proceeding through the edges towards the right-hand side of the macroblock in their geometrical order, and then
horizontal edges are filtered, starting with the edge on the top of the macroblock proceeding through the edges towards
the bottom of the macroblock in their geometrical order. Figure 8-10 shows edges of a macroblock which can be
interpreted as luma or chroma edges.

When interpreting the edges in Figure 8-10 as luma edges, depending on the transform_size 8x8 flag, the following
applies.

— Iftransform_size 8x8 flag is equal to 0, both types, the solid bold and dashed bold luma edges are filtered.

— Otherwise (transform_size 8x8 flag is equal to 1), only the solid bold luma edges are filtered.

When interpreting the edges in Figure 8-10 as chroma edges, depending on ChromaArrayType, the following applies.
— If ChromaArrayType is equal to 1 (4:2:0 format), only the solid bold chroma edges are filtered.

— Otherwise, if ChromaArrayType is equal to 2 (4:2:2 format), the solid bold vertical chroma edges are filtered and
both types, the solid bold and dashed bold horizontal chroma edges are filtered.

— Otherwise, if ChromaArrayType is equal to 3 (4:4:4 format), the following applies.
— Iftransform_size 8x8 flag is equal to 0, both types, the solid bold and dashed bold chroma edges are filtered.
— Otherwise (transform_size 8x8 flag is equal to 1), only the solid bold chroma edges are filtered.

— Otherwise (ChromaArrayType is equal to 0), no chroma edges are filtered.

)

)

)

)

)

)

)

)
bt
Horizontal Edges

Vertical Edges

Figure 8-10 — Boundariesin a macroblock to befiltered

For the current macroblock address CurrMbAddr proceeding over values 0..PicSizeInMbs — 1, the following applies.

1. The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output
is assigned to mbAddrA and mbAddrB.

2. The variables fieldModeMbFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag are
derived as follows.

— The variable fieldModeMbFlag is derived as follows.
— Ifany of the following conditions is true, fieldModeMbFlag is set equal to 1.
— field pic flagis equal to 1.
— MbaffFrameFlag is equal to 1 and the macroblock CurrMbAddr is a field macroblock.
— Otherwise, fieldModeMbFlag is set equal to 0.

194 ITU-T Rec. H.264 (03/2005)

The variable filterInternalEdgesFlag is derived as follows.

— If disable_deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is equal to 1,
the variable filterInternalEdgesFlag is set equal to O;

— Otherwise (disable deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is not
equal to 1), the variable filterInternalEdgesFlag is set equal to 1.

The variable filterLeftMbEdgeFlag is derived as follows.
— Ifany of the following conditions is true, the variable filterLeftMbEdgeFlag is set equal to 0.
— MbaffFrameFlag is equal to 0 and CurrMbAddr % PicWidthInMbs is equal to 0.
— MbaffFrameFlag is equal to 1 and (CurrMbAddr >> 1) % PicWidthInMbs is equal to 0.
— disable_deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is equal to 1.

— disable_deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is equal to 2
and the macroblock mbAddrA is not available.

— Otherwise, the variable filterLeftMbEdgeFlag is set equal to 1.

The variable filterTopMbEdgeFlag is derived as follows.

— Ifany of the following conditions is true, the variable filterTopMbEdgeFlag is set equal to 0.
— MbaffFrameFlag is equal to 0 and CurrMbAddr is less than PicWidthInMbs.

— MbaffFrameFlag is equal to 1, (CurrMbAddr>>1) is less than PicWidthInMbs, and the
macroblock CurrMbAddr is a field macroblock.

— MbaffFrameFlag is equal to 1, (CurrMbAddr >> 1) is less than PicWidthInMbs, the macroblock
CurrMbAddr is a frame macroblock, and CurrMbAddr % 2 is equal to 0.

— disable_deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is equal to 1.

— disable_deblocking_filter idc for the slice that contains the macroblock CurrMbAddr is equal to 2
and the macroblock mbAddrB is not available.

— Otherwise, the variable filterTopMbEdgeFlag is set equal to 1.
Given the variables fieldModeMbFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and

filterTopMbEdgeFlag the deblocking filtering is controlled as follows.

When filterLeftMbEdgeFlag is equal to 1, the filtering of the left vertical luma edge is specified as follows.

— The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag =0, verticalEdgeFlag =1,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEy) = (0, k) with k=0..15 as input and S'| as
output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical luma edges is specified as
follows.

— When transform_size 8x8 flag is equal to 0, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag =0, verticalEdgeFlag=1, fieldModeFilteringFlag = fieldModeMbFlag, and
(xEx, YEx) = (4, k) with k = 0..15 as input and S'_ as output.

— The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag =0, verticalEdgeFlag =1,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEi) = (8, k) with k =0..15 as input and S'p as
output.

— When transform_size 8x8 flag is equal to 0, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag =0, verticalEdgeFlag=1, fieldModeFilteringFlag = fieldModeMbFlag, and
(xEx, YEx) = (12, k) with k = 0..15 as input and S', as output.

When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as follows.

— If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than or equal
to 2 * PicWidthInMbs, the macroblock CurrMbAddr is a frame macroblock, and the macroblock
(CurrMbAddr - 2 * PicWidthInMbs + 1) is a field macroblock, the following applies.

ITU-T Rec. H.264 (11/2007) 195

196

— The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag=0,
verticalEdgeFlag = 0, fieldModeFilteringFlag = 1, and (xEy, yEy) = (k, 0) with k=0..15 as input
and S'. as output.

— The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag=0,
verticalEdgeFlag = 0, fieldModeFilteringFlag = 1, and (xEy, yEy) = (k, 1) with k=10..15 as input
and S'y as output.

Otherwise, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag=0,
verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEy) =(k, 0) with
k =0..15 as input and S', as output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal luma edges is specified as
follows.

When transform_size 8x8 flag is equal to 0, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag =0, verticalEdgeFlag=0, fieldModeFilteringFlag = fieldModeMbFlag, and
(xEy, YEy) = (k, 4) with k = 0..15 as input and S'_ as output.

The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag =0,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEy) = (k, 8) with k=0..15 as input and S'| as
output.

When transform_size 8x8 flag is equal to 0, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag =0, verticalEdgeFlag=0, fieldModeFilteringFlag = fieldModeMbFlag, and
(xEy, yEy) = (k, 12) with k = 0..15 as input and S'| as output.

When ChromaArrayType is not equal to 0, for the filtering of both chroma components, with iCbCr =0 for
Cb and iCbCr = 1 for Cr, the following applies.

When filterLeftMbEdgeFlag is equal to 1, the filtering of the left vertical chroma edge is specified as
follows.

The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag=1, iCbCer,
verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEx) =(0,k) with
k = 0..MbHeightC - 1 as input and S'c with C being replaced by Cb for iCbCr = 0 and C being replaced
by Cr for iCbCr = 1 as output.

When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is specified
as follows.

— When ChromaArrayType is not equal to 3 or transform_size 8x8 flag is equal to 0, the process
specified in subclause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag =1,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, YEi) = (4, k) with k = 0..MbHeightC - 1 as
input and S'c with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1
as output.

— When ChromaArrayType is equal to 3, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag =1, fieldModeFilteringFlag = fieldModeMbFlag,
and (xEy, yEy) = (8, k) with k = 0..MbHeightC - 1 as input and S'c with C being replaced by Cb for
iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

— When ChromaArrayType is equal to 3 or transform size 8x8 flag is equal to 0, the process
specified in subclause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag =1,
fieldModeFilteringFlag = fieldModeMbFlag, and (xXE, yEy) = (12, k) with k =0..MbHeightC - 1
as input and S'c with C being replaced by Cb for iCbCr=0 and C being replaced by Cr for
iCbCr = 1 as output.

When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified as
follows.

— If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than or
equal to 2 * PicWidthInMbs, the macroblock CurrMbAddr is a frame macroblock, and the
macroblock (CurrMbAddr — 2 * PicWidthInMbs + 1) is a field macroblock, the following applies.

— The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCer,
verticalEdgeFlag =0, fieldModeFilteringFlag=1, and (xE yEx)=(k, 0) with
k =0..MbWidthC - 1 as input and S'c with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as output.

ITU-T Rec. H.264 (03/2005)

— The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCer,
verticalEdgeFlag =0, fieldModeFilteringFlag=1, and (xE, yEx)=(k, 1) with
k =0..MbWidthC - 1 as input and S'c with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as output.

Otherwise, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCer,
verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEy) = (k, 0) with
k =0..MbWidthC - 1 as input and S'c with C being replaced by Cb for iCbCr =0 and C being
replaced by Cr for iCbCr = 1 as output.

— When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is
specified as follows.

When ChromaArrayType is not equal to 3 or transform_size 8x8 flag is equal to 0, the process
specified in subclause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag = 0,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEy) = (k, 4) with k =0..MbWidthC - 1 as
input and S'c with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1
as output.

When ChromaArrayType is not equal to 1, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag =0, fieldModeFilteringFlag = fieldModeMbFlag,
and (xEy, yEy) = (k, 8) with k = 0..MbWidthC - 1 as input and S'c with C being replaced by Cb for
iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

When ChromaArrayType is equal to 2, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag =0, fieldModeFilteringFlag = fieldModeMbFlag,
and (xEy, yE) = (k, 12) with k=0..MbWidthC - 1 as input and S'c with C being replaced by Cb
for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

When ChromaArrayType is equal to 3 or transform size 8x8 flag is equal to 0, the process
specified in subclause 8.7.1 is invoked with chromaEdgeFlag =1, iCbCr, verticalEdgeFlag = 0,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEy, yEi) = (k, 12) with k =0..MbWidthC — 1
as input and S’¢ with C being replaced by Cb for iCbCr=0 and C being replaced by Cr for
iCbCr = 1 as output.

NOTE 2 — When field mode filtering (fieldModeFilteringFlag is equal to 1) is applied across the top horizontal
edges of a frame macroblock, this vertical filtering across the top or bottom macroblock boundary may involve
some samples that extend across an internal block edge that is also filtered internally in frame mode.

NOTE 3 — For example, in 4:2:0 chroma format when transform_size 8x8 flag is equal to 0, the following
applies. 3 horizontal luma edges, 1 horizontal chroma edge for Cb, and 1 horizontal chroma edge for Cr are
filtered that are internal to a macroblock. When field mode filtering (fieldModeFilteringFlag is equal to 1) is
applied to the top edges of a frame macroblock, 2 horizontal luma, 2 horizontal chroma edges for Cb, and 2
horizontal chroma edges for Cr between the frame macroblock and the above macroblock pair are filtered using
field mode filtering, for a total of up to 5 horizontal luma edges, 3 horizontal chroma edges for Cb, and 3
horizontal chroma edges for Cr filtered that are considered to be controlled by the frame macroblock. In all other
cases, at most 4 horizontal luma, 2 horizontal chroma edges for Cb, and 2 horizontal chroma edges for Cr are
filtered that are considered to be controlled by a particular macroblock.

Depending on separate_colour plane flag the following applies.

— If separate_colour_plane flag is equal to 0, the arrays S’;, S’cy, S’c; are assigned to the arrays Sy, Scp, Scr (Which
represent the decoded picture), respectively.

— Otherwise (separate_colour plane flag is equal to 1), the following applies.

871

If colour_plane id is equal to 0, the arrays S’ is assigned to the array S; (which represent the luma component
of the decoded picture).

Otherwise,

if colour plane _id is equal to 1, the arrays S’ is assigned to the array S¢, (which represents the Cb

component of the decoded picture).

Otherwise

(colour_plane _id is equal to 2), the arrays S’ is assigned to the array S, (which represents the Cr

component of the decoded picture).

Filtering processfor block edges

Inputs to this process are chromaEdgeFlag, the chroma component index iCbCr (when chromaEdgeFlag is equal to 1),
verticalEdgeFlag, fieldModeFilteringFlag, and a set of nE sample locations (xEy, YEy), with k = 0..nE - 1, expressed
relative to the upper left corner of the macroblock CurrMbAddr. The set of sample locations (xEy, yEy) represent the

ITU-T Rec. H.264 (11/2007) 197

sample locations immediately to the right of a vertical edge (when verticalEdgeFlag is equal to 1) or immediately below
a horizontal edge (when verticalEdgeFlag is equal to 0).

The variable nE is derived as follows.
— If chromaEdgeFlag is equal to 0, nE is set equal to 16.

— Otherwise (chromaEdgeFlag is equal tol), nE 1is set equal to (verticalEdgeFlag == 1)?
MbHeightC : MbWidthC.

Let s' be a variable specifying a luma or chroma sample array, be derived as follows.
— If chromaEdgeFlag is equal to 0, s' represents the luma sample array S't of the current picture.

— Otherwise, if chromaEdgeFlag is equal to 1 and iCbCer is equal to 0, s' represents the chroma sample array S'c, of the
chroma component Cb of the current picture.

— Otherwise (chromaEdgeFlag is equal to 1 and iCbCr is equal to 1), s’ represents the chroma sample array S'c; of the
chroma component Cr of the current picture.

The variable dy is derived as follows.
— If fieldModeFilteringFlag is equal to 1 and MbaffFrameFlag is equal to 1, dy is set equal to 2.
— Otherwise (fieldModeFilteringFlag is equal to 0 or MbaffFrameFlag is equal to 0), dy is set equal to 1.

The position of the upper-left luma sample of the macroblock CurrMbAddr is derived by invoking the inverse
macroblock scanning process in subclause 6.4.1 with mbAddr = CurrMbAddr as input and the output being assigned to

(xL, yI).
The variables xP and yP are derived as follows.
— If chromaEdgeFlag is equal to 0, xP is set equal to xI and yP is set equal to yI.

— Otherwise (chromaEdgeFlag is equal to 1), xP is set equal to xI / SubWidthC and yP is set equal to
(yI + SubHeightC — 1) / SubHeightC.

b3 p2 p1 Po o qQ (¢5] q3

Figure 8-11 — Convention for describing samples across a 4x4 block horizontal or vertical boundary

For each sample location (XEy, yEy), k=0 .. nE - 1, the following applies.

— The filtering process is applied to a set of eight samples across a 4x4 block horizontal or vertical edge denoted as p;
and q; with i = 0..3 as shown in Figure 8-11 with the edge lying between py and qy. p; and q; with i = 0..3 are
specified as follows.

— If verticalEdgeFlag is equal to 1,

gi=s’[xP + xEy +1, yP + dy * yEy] (8-452)

pi=s’[xP+xE—i—1,yP+dy * yEi | (8-453)

— Otherwise (verticalEdgeFlag is equal to 0),

qi= ' XP +XEj, yP +dy * (yEc+i)~ (yE.%2)] (8-454)

pi=s’[xP +xE, yP+dy * (yEx—1-1)-(yEx % 2)] (8-455)

198 ITU-T Rec. H.264 (03/2005)

— The process specified in subclause 8.7.2 is invoked with the sample values p; and q; (i = 0..3), chromaEdgeFlag,
verticalEdgeFlag, and fieldModeFilteringFlag as input, and the output is assigned to the filtered result sample values
p'iand q'; with1=0..2.

— The input sample values p; and q; with i = 0..2 are replaced by the corresponding filtered result sample values p'; and
q'; with 1 = 0..2 inside the sample array s’ as follows.

— IfverticalEdgeFlag is equal to 1,

s’[xP + xE, +1, yP + dy * yE] = ¢} (8-456)

s’[xP+xE,—i—1,yP +dy * yE,] = p'; (8-457)

— Otherwise (verticalEdgeFlag is equal to 0),

S[XP+xBy, yP+dy * (yEc+1) - (yE % 2) =g\ (8-458)

S'[XP +xEy, yP+dy * (yE —i— 1)~ (yE %2)]=p} (8-459)

8.7.2 Filtering processfor a set of samplesacrossa horizontal or vertical block edge

Inputs to this process are the input sample values p; and g; with i in the range of 0..3 of a single set of samples across an
edge that is to be filtered, chromaEdgeFlag, verticalEdgeFlag, and fieldModeFilteringFlag.

Outputs of this process are the filtered result sample values p'; and q'; with i in the range of 0..2.
The content dependent boundary filtering strength variable bS is derived as follows.

— If chromaEdgeFlag is equal to 0, the derivation process for the content dependent boundary filtering strength
specified in subclause 8.7.2.1 is invoked with py, qo, and verticalEdgeFlag as input, and the output is assigned to
bS.

— Otherwise (chromaEdgeFlag is equal to 1), the bS used for filtering a set of samples of a horizontal or vertical
chroma edge is set equal to the value of bS for filtering the set of samples of a horizontal or vertical luma edge,
respectively, that contains the luma sample at location (SubWidthC * x, SubHeightC * y) inside the luma array of
the same field, where (x, y) is the location of the chroma sample q, inside the chroma array for that field.

Let filterOffsetA and filterOffsetB be the values of FilterOffsetA and FilterOffsetB as specified in subclause 7.4.3 for
the slice that contains the macroblock containing sample q.

Let qP, and gP, be variables specifying quantisation parameter values for the macroblocks containing the samples p,
and qy, respectively. The variables qP, (with z being replaced by p or q) are derived as follows.

— If chromaEdgeFlag is equal to 0, the following applies.
— If the macroblock containing the sample z, is an I PCM macroblock, qP, is set to 0.

— Otherwise (the macroblock containing the sample z, is not an I PCM macroblock), qP, is set to the value of QPy
of the macroblock containing the sample z,.

— Otherwise (chromaEdgeFlag is equal to 1), the following applies.

— If the macroblock containing the sample z, is an I PCM macroblock, qP, is equal set to the value of QP that
corresponds to a value of 0 for QPy as specified in subclause 8.5.8.

— Otherwise (the macroblock containing the sample z, is not an I PCM macroblock), gP, is set equal to the value
of QP that corresponds to the value QPy of the macroblock containing the sample z, as specified in subclause
8.5.8.

The process specified in subclause 8.7.2.2 is invoked with py, qo, p1, qi, chromaEdgeFlag, bS, filterOffsetA,
filterOffsetB, qP,, and qP, as inputs, and the outputs are assigned to filterSamplesFlag, indexA, o, and .

The variable chromaStyleFiltering is set by

chromaStyleFiltering = chromaEdgeFlag && (ChromaArrayType != 3) (8-460)

ITU-T Rec. H.264 (11/2007) 199

Depending on the variable filterSamplesFlag, the following applies.
— IffilterSamplesFlag is equal to 1, the following applies.

— If bS is less than 4, the process specified in subclause 8.7.2.3 is invoked with p; and q; (i = 0..2),
chromaEdgeFlag, chromaStyleFiltering, bS, B, and indexA given as input, and the output is assigned to p'; and q;
(1=0.2).

— Otherwise (bS is equal to 4), the process specified in subclause 8.7.2.4 is invoked with p; and q; (i = 0..3),
chromaEdgeFlag, chromaStyleFiltering, o, and B given as input, and the output is assigned to p'; and q'; (i = 0..2).

— Otherwise (filterSamplesFlag is equal to 0), the filtered result samples p'; and q'; (i = 0..2) are replaced by the
corresponding input samples p; and g;:

fori=0.2, Pi=Dpi (8-461)

fori=0.2, qi=q (8-462)

8.7.2.1 Derivation processfor the luma content dependent boundary filtering strength

Inputs to this process are the input sample values py and qo of a single set of samples across an edge that is to be filtered
and verticalEdgeFlag.

Output of this process is the variable bS.
Let the variable mixedModeEdgeFlag be derived as follows.

— If MbaffFrameFlag is equal to 1 and the samples py and qo are in different macroblock pairs, one of which is a
field macroblock pair and the other is a frame macroblock pair, mixedModeEdgeFlag is set equal to 1

— Otherwise, mixedModeEdgeFlag is set equal to 0.
The variable bS is derived as follows.

— If the block edge is also a macroblock edge and any of the following conditions are true, a value of bS equal to 4 is
the output:

— the samples py and qo are both in frame macroblocks and either or both of the samples py or qo is in a
macroblock coded using an Intra macroblock prediction mode.

— the samples py and qo are both in frame macroblocks and either or both of the samples py or qo is in a
macroblock that is in a slice with slice_type equal to SP or SI.

— MbaffFrameFlag is equal to 1 or field pic_flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples p, or q is in a macroblock coded using an Intra macroblock prediction mode.

— MbaffFrameFlag is equal to 1 or field pic_flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples p, or qo is in a macroblock that is in a slice with slice_type equal to SP or SI.

— Otherwise, if any of the following conditions are true, a value of bS equal to 3 is the output:

— mixedModeEdgeFlag is equal to 0 and either or both of the samples p, or gy is in a macroblock coded using an
Intra macroblock prediction mode.

— mixedModeEdgeFlag is equal to 0 and either or both of the samples py or qo is in a macroblock that is in a
slice with slice type equal to SP or SI.

— mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples py or qy is
in a macroblock coded using an Intra macroblock prediction mode.

— mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples p, or qq is
in a macroblock that is in a slice with slice_type equal to SP or SI.

— Otherwise, if the following condition is true, a value of bS equal to 2 is the output:

— the luma block containing sample py or the luma block containing sample qy contains non-zero transform
coefficient levels.

— Otherwise, if any of the following conditions are true, a value of bS equal to 1 is the output:

— mixedModeEdgeFlag is equal to 1.

200 ITU-T Rec. H.264 (03/2005)

mixedModeEdgeFlag is equal to 0 and for the prediction of the macroblock/sub-macroblock partition
containing the sample p, different reference pictures or a different number of motion vectors are used than for
the prediction of the macroblock/sub-macroblock partition containing the sample .

NOTE 1 — The determination of whether the reference pictures used for the two macroblock/sub-macroblock partitions are
the same or different is based only on which pictures are referenced, without regard to whether a prediction is formed

using an index into reference picture list 0 or an index into reference picture list 1, and also without regard to whether the
index position within a reference picture list is different.

mixedModeEdgeFlag is equal to 0 and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample p, and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample qo and the absolute difference between the horizontal or vertical component of
the motion vectors used is greater than or equal to 4 in units of quarter luma frame samples.

mixedModeEdgeFlag is equal to 0 and two motion vectors and two different reference pictures are used to
predict the macroblock/sub-macroblock partition containing the sample p, and two motion vectors for the
same two reference pictures are used to predict the macroblock/sub-macroblock partition containing the
sample qp and the absolute difference between the horizontal or vertical component of the two motion vectors
used in the prediction of the two macroblock/sub-macroblock partitions for the same reference picture is
greater than or equal to 4 in units of quarter luma frame samples.

mixedModeEdgeFlag is equal to 0 and two motion vectors for the same reference picture are used to predict
the macroblock/sub-macroblock partition containing the sample p, and two motion vectors for the same
reference picture are used to predict the macroblock/sub-macroblock partition containing the sample qo and
both of the following conditions are true:

— The absolute difference between the horizontal or vertical component of list 0 motion vectors used in the
prediction of the two macroblock/sub-macroblock partitions is greater than or equal to 4 in quarter luma
frame samples or the absolute difference between the horizontal or vertical component of the list 1
motion vectors used in the prediction of the two macroblock/sub-macroblock partitions is greater than or
equal to 4 in units of quarter luma frame samples.

— The absolute difference between the horizontal or vertical component of list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample p, and the list 1 motion
vector used in the prediction of the macroblock/sub-macroblock partition containing the sample qq is
greater than or equal to 4 in units of quarter luma frame samples or the absolute difference between the
horizontal or vertical component of the list 1 motion vector used in the prediction of the
macroblock/sub-macroblock partition containing the sample p, and list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample q is greater than or equal
to 4 in units of quarter luma frame samples.

NOTE 2 — A vertical difference of 4 in units of quarter luma frame samples is a difference of 2 in units of quarter
luma field samples

Otherwise, a value of bS equal to 0 is the output.

8.7.2.2 Derivation processfor thethresholdsfor each block edge

Inputs to this process are

— the input sample values py, qo, p1 and q; of a single set of samples across an edge that is to be filtered,

the variables chromaEdgeFlag and bS, for the set of input samples, as specified in 8.7.2,

— the variables filterOffsetA, filterOffsetB, qP,, and qP,,.

Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the
value of indexA, and the values of the threshold variables o and f3.

Let qP,, be a variable specifying an average quantisation parameter. It is derived as follows.

QP =(qP, +qPq+1)>>1

(8-463)

NOTE - In SP and SI slices, qP,, is derived in the same way as in other slice types. QSy from Equation 7-29 is not used in the

deblocking filter.

Let indexA be a variable that is used to access the o table (Table 8-16) as well as the tc, table (Table 8-17), which is
used in filtering of edges with bS less than 4 as specified in subclause 8.7.2.3, and let indexB be a variable that is used

to access the [table (Table 8-16). The variables indexA and indexB are derived as follows.

indexA = Clip3(0, 51, qP,, + filterOffsetA)

I TU-T Rec. H.264 (11/2007)

(8-464)

201

indexB = Clip3(0, 51, qP,, + filterOffsetB) (8-465)
The variables o and ' depending on the values of indexA and indexB are specified in Table 8-16. Depending on

chromaEdgeFlag, the corresponding threshold variables o and P are derived as follows.

— If chromaEdgeFlag is equal to O,

o=o * (1 << (BitDepthy — 8)) (8-466)

B=p"* (1 <<(BitDepthy - 8)) (8-467)

— Otherwise (chromaEdgeFlag is equal to 1),

o= o * (1 <<(BitDepthc— 8)) (8-468)

p=p"* (1 <<(BitDepthc-8)) (8-469)

The variable filterSamplesFlag is derived by

filterSamplesFlag = (bS 1= 0 && Abs(po—qo) <0 && Abs(p;—po) <P && Abs(qi—qo)<B) (8-470)

Table 8-16 — Derivation of offset dependent threshold variablesa’ and ' from indexA and indexB

indexA (for o) or indexB (for ')

o1 (234|567 |8 |9 (1011|1213 |14|15]|16|17|18|19|20 |21 |22|23]|24 |25

o jfojofojojojofojojojojofojojojo(o0|4|4|s5|(6|7|8|j9\(10|12]13

gjojofojojojojojofO|lO]O|O]O]|O|O|O]|2]2|2|3|3|3|3|4]|4]|4

Table 8-16 (concluded) — Derivation of indexA and indexB from offset dependent threshold variables o' and '

indexA (for a') or indexB (for ')

26 (27 (28|29 (30|31 (32|33|34|35(36|37(38|39(40|41|42|43 |44 |45|46|47 |48 |49]|50] 51

o |15[17(20|22|25|28(32|36(40|45|50|56|63|71|80|90|101|113{127|144]|162|182{203|226|255|255

B 6|16 (7|78 |8(9]9]|10)10(11 11|12 (12|13 |13 |14 |14 |15|15|16|16| 17|17 |18 |18

8.7.2.3 Filtering processfor edgeswith bSlessthan 4

Inputs to this process are the input sample values p; and q; (i = 0..2) of a single set of samples across an edge that is to
be filtered, chromaEdgeFlag, chromaStyleFiltering, bS, B, and indexA, for the set of input samples, as specified in
8.7.2.

Outputs of this process are the filtered result sample values p'; and ¢'; (i = 0..2) for the set of input sample values.

Let Clip1() be a function that is replaced by Cliply() when chromaStyleFiltering is equal to 0 and by Clipl¢() when
chromaStyleFlltering is equal to 1.

The filtered result samples p'y and q'y are derived by

A=Clip3(—tc, te, ((((qo—Ppo) <<2)+(pi—qi)+4)>>3)) (8-471)

p'o=Clipl(po+A) (8-472)

202 ITU-T Rec. H.264 (03/2005)

q'o=Clipl(qo—A)

where the threshold tc is determined as follows.

— If chromaStyleFiltering is equal to 0,

tc=tco+ ((a,<P)?1:0)+((ag<P)?1:0)

— Otherwise (chromaStyleFiltering is equal to 1),

te=teo+ 1

(8-473)

(8-474)

(8-475)

Depending on the values of indexA and bS the variable t'c is specified in Table 8-17. Depending on chromaEdgeFlag,

the corresponding threshold variable tcg is derived as follows.

— If chromaEdgeFlag is equal to O,

tco = t'CO * (1 < (BltDepthY -8))

— Otherwise (chromaEdgeFlag is equal to 1),

tco = t'CO * (1 < (BltDepthC -8))

Let a, and a, be two threshold variables specified by

a, = Abs(p2—po)

aqg=Abs(q2—qo)

The filtered result sample p'; is derived as follows

— If chromaStyleFiltering is equal to 0 and a,, is less than [3,

p'1=p1 + Clip3(—tco, teo, (P2 T ((Potgo+1)>>1)—=(pi<<1)) >> 1)
— Otherwise (chromaStyleFiltering is equal to 1 or a, is greater than or equal to f3),
pP'1=pi

The filtered result sample q'; is derived as follows

— If chromaStyleFiltering is equal to 0 and a is less than [3,

q'1 = qi + Clip3(—tco, teo, (2 +((Po+qo+1)>1)—(q<<1)) > 1)

— Otherwise (chromaStyleFiltering is equal to 1 or aq is greater than or equal to f3),

qdi=q

The filtered result samples p'; and q'; are always set equal to the input samples p, and qy:

p2=Dp2

qd2=q

I TU-T Rec. H.264 (11/2007)

(8-476)

(8-477)

(8-478)

(8-479)

(8-480)

(8-481)

(8-482)

(8-483)

(8-484)

(8-485)

203

Table 8-17 —Value of variablet'cg as a function of indexA and bS

indexA

0123|4567 |8|9 1011|1213 |14|15|16|17|18|19(20|21|22|23 24|25

bS=1 o,0/(0}j0}j0jO0O|O]O|0O|0OJO]O]O|O|O|O]O]O]OJO]O]O]O 1|11
bS=2 o,0/(0j0j0jO0O|O]O|]O0O]|OJO]O]O]|OJO|O]O]O]OJO]O|TI |1 1|11
bS=3 ojojojoy0j0j{o0jo0j0;0{o0jo0foyo0jo0ojojofryrjrj{1ry1ry1rjr{11

Table 8-17 (concluded) — Value of variablet'cq as afunction of indexA and bS

indexA

261272812930 |31(32|33/34|35|36|37|38|39|40 |41 |42 |43|44|45|46|47|48|49 50|51

bS=1 rj1rj1 (1|1 {1rj1r(2y22(23|3|3|4|4[4,5]|]6|6/|7|8,9]10[11]13
bS=2 1111 {2}2(2,2{3[3[3/4|4|5|5/|6|7|8|8[10/11|12]13]15/|17
bS=3 112122233 (3|4|/4[4|5|6|6|7|8[9|10/11|13]14|16/18]20|23/25

8.7.24 Filtering processfor edgesfor bSequal to 4

Inputs to this process are the input sample values p; and q; (i = 0..3) of a single set of samples across an edge that is to
be filtered, chromaEdgeFlag, chromaStyleFiltering, and the values of the threshold variables o and B for the set of
samples, as specified in subclause 8.7.2.

Outputs of this process are the filtered result sample values p'; and q'; (i = 0..2) for the set of input sample values.
Let a, and a4 be two threshold variables as specified in Equations 8-478 and 8-479, respectively, in subclause 8.7.2.3.
The filtered result samples p'; (i = 0..2) are derived as follows.

— If chromaStyleFiltering is equal to 0 and the following condition holds,

a, <P && Abs(po—qo) <((o>>2)+2) (8-486)

then the variables p'o, p'1, and p'; are derived by

p'o=(p2+2%p; +2%py +2%qo + q1 +4)>>3 (8-487)
pi1=(p2tpitpotqot2)>>2 (8-488)
p2=(2%ps +3*py+py T po+qot4)>>3 (8-489)

— Otherwise (chromaStyleFiltering is equal to 1 or the condition in Equation 8-486 does not hold), the variables p'y,
p'1, and p', are derived by

po=(2*pitpotqi+2)>>2 (8-490)
P =pi (8-491)
pP2=p2 (8-492)

204 ITU-T Rec. H.264 (03/2005)

The filtered result samples '; (i = 0..2) are derived as follows.

— If chromaStyleFiltering is equal to 0 and the following condition holds,

a; <P && Abs(po—qo) <((a>>2)+2) (8-493)

then the variables q', q'1, and q'; are derived by

Qo =(p1 +2%po+2%qo +2*q; +qu +4)>>3 (8-494)
q1=(potqotqtqt2)>>2 (8-495)
Q2= (2*qG +3*@+qi tqo+tpot4)>>3 (8-496)

— Otherwise (chromaStyleFiltering is equal to 1 or the condition in Equation 8-493 does not hold), the variables q'o,
q'1, and q', are derived by

qo=(2*q +qo+tpi+2)>>2 (8-497)

qd1=q (8-498)

q2=q2 (8-499)
9 Parsing process

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v),
me(Vv), se(v), te(v) (see subclause 9.1), ce(v) (see subclause 9.2), or ae(v) (see subclause 9.3).

9.1 Parsing process for Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v),
me(v), se(v), or te(v). For syntax elements in subclauses 7.3.4 and 7.3.5, this process is invoked only when
entropy _coding_mode _flag is equal to 0.

Inputs to this process are bits from the RBSP.
Outputs of this process are syntax element values.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. Syntax elements coded as te(v) are truncated
Exp-Golomb-coded. The parsing process for these syntax elements begins with reading the bits starting at the current
location in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are
equal to 0. This process is specified as follows:

leadingZeroBits = -1;
for(b = 0; !b; leadingZeroBits++)
b =read bits(1)
The variable codeNum is then assigned as follows:

codeNum = 2'edineZeroBits _ 1 4 yoad bits(leadingZeroBits)

where the value returned from read bits(leadingZeroBits) is interpreted as a binary representation of an unsigned
integer with most significant bit written first.

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into “prefix” and “suffix” bits.
The “prefix” bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are
shown as either 0 or 1 in the bit string column of Table 9-1. The “suffix” bits are those bits that are parsed in the

ITU-T Rec. H.264 (11/2007) 205

computation of codeNum and are shown as x; in Table 9-1, with i being in the range 0 to leadingZeroBits - 1, inclusive.
Each x; can take on values 0 or 1.

Table 9-1 —Bit stringswith “prefix” and “ suffix” bits and assignment to codeNum ranges (infor mative)

Bit string form Range of codeNum
1 0
0 1 x, 1-2
0 01 x; Xg 3-6
0001 x, X9 Xo 7-14
0000 1 x3 X, X1 Xg 15-30
000001 x; X3 Xy X1 Xo 31-62

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (infor mative)

Bit string codeNum
1 0
010 1
011 2
00100 3
00101 4
00110 5
00111 6
0001000 7
0001001 8
0001010 9

Depending on the descriptor, the value of a syntax element is derived as follows.
— If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.

— Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the
mapping process for signed Exp-Golomb codes as specified in subclause 9.1.1 with codeNum as the input.

— Otherwise, if the syntax element is coded as me(v), the value of the syntax element is derived by invoking the
mapping process for coded block pattern as specified in subclause 9.1.2 with codeNum as the input.

— Otherwise (the syntax element is coded as te(v)), the range of possible values for the syntax element is determined
first. The range of this syntax element may be between 0 and x, with x being greater than or equal to 1 and the
range is used in the derivation of the value of the syntax element value as follows

— If x is greater than 1, codeNum and the value of the syntax element is derived in the same way as for syntax
elements coded as ue(v)

206 ITU-T Rec. H.264 (03/2005)

— Otherwise (x is equal to 1), the parsing process for codeNum which is equal to the value of the syntax element
is given by a process equivalent to:

b =read bits(1)
codeNum = b

9.1.1 Mapping processfor signed Exp-Golomb codes

Input to this process is codeNum as specified in subclause 9.1.

Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order
and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the

assignment rule.

Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

codeNum | syntax element value

0 0

1 1

2 -1

3 2

4 -2

5 3

6 -3

k D! Ceil(k+2)

9.1.2 Mapping processfor coded block pattern

Input to this process is codeNum as specified in subclause 9.1.

Output of this process is a value of the syntax element coded block pattern coded as me(v).

Table 9-4 shows the assignment of coded_block pattern to codeNum depending on whether the macroblock prediction
mode is equal to Intra_4x4, Intra_8x8 or Inter.

Table 9-4 — Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block_pattern
Intra_4x4, Intra_8x8 Inter
0 47 0
1 31 16
2 15 1
3 0 2
4 23 4
5 27 8
6 29 32

ITU-T Rec. H.264 (11/2007) 207

208

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block_pattern
Intra_4x4, Intra_8x8 Inter
7 30 3
8 7 5
9 11 10
10 13 12
11 14 15
12 39 47
13 43 7
14 45 11
15 46 13
16 16 14
17 3 6
18 5 9
19 10 31
20 12 35
21 19 37
22 21 42
23 26 44
24 28 33
25 35 34
26 37 36
27 42 40
28 44 39
29 1 43
30 2 45
31 4 46
32 8 17
33 17 18
34 18 20
35 20 24
36 24 19
37 6 21
38 9 26

ITU-T Rec. H.264 (03/2005)

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block_pattern
Intra_4x4, Intra_8x8 Inter
39 22 28
40 25 23
41 32 27
42 33 29
43 34 30
44 36 22
45 40 25
46 38 38
47 41 41

(b) ChromaArrayTypeisequal toOor 3

codeNum coded_block_pattern
Intra_4x4, Intra_8x8 Inter
0 15 0
1 0 1
2 7 2
3 11 4
4 13 8
5 14 3
6 3 5
7 5 10
8 10 12
9 12 15
10 1 7
11 2 11
12 4 13
13 8 14
14 6 6
15 9 9

I TU-T Rec. H.264 (11/2007)

209

9.2 CAVLC parsing process for transform coefficient levels

This process is invoked when parsing syntax elements with descriptor equal to ce(v) in subclause 7.3.5.3.2 and when
entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BlkIdx or the chroma block index chroma4x4Blkldx, cb4x4BIkIdx or
cr4x4BlkIdx of the current block of transform coefficient levels.

Output of this process is the list coeffLevel containing transform coefficient levels of the luma block with block index
luma4x4BlkIdx or the chroma block with block index chroma4x4BlklIdx, cb4x4Blkldx or cr4x4Blkldx.

The process is specified in the following ordered steps:
1. All transform coefficient levels, with indices from 0 to maxNumCoeff - 1, in the list coeffLevel are set equal to 0.

2. The total number of non-zero transform coefficient levels TotalCoeff(coeff token) and the number of trailing one
transform coefficient levels TrailingOnes(coeff token) are derived by parsing coeff token (see subclause 9.2.1) as
follows.

- If the number of non-zero transform coefficient levels TotalCoeff(coeff token) is equal to 0, the list
coeffLevel containing 0 values is returned and no further step is carried out.

- Otherwise, the following steps are carried out.

a. The non-zero transform coefficient levels are derived by parsing trailing_ones_sign_flag, level prefix, and
level suffix (see subclause 9.2.2).

b. The runs of zero transform coefficient levels before each non-zero transform coefficient level are derived
by parsing total zeros and run_before (see subclause 9.2.3).

c. The level and run information are combined into the list coeffLevel (see subclause 9.2.4).

9.21 Parsing processfor total number of transform coefficient levelsand trailing ones

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BIkIdx or the chroma block index chroma4x4Blkldx, cb4x4BlkIdx or
cr4x4Blkldx of the current block of transform coefficient levels.

Outputs of this process are TotalCoeff(coeff token), TrailingOnes(coeft token), and the variable nC.

The syntax element coeff token is decoded using one of the six VLCs specified in the six right-most columns of
Table 9-5. Each VLC specifies both TotalCoeff(coeff token) and TrailingOnes(coeff token) for a given codeword
coeff token. VLC selection is dependent upon a variable nC that is derived as follows.

— Ifthe CAVLC parsing process is invoked for ChromaDCLevel, nC is derived as follows.
— If ChromaArrayType is equal to 1, nC is set equal to -1,
— Otherwise (ChromaArrayType is equal to 2), nC is set equal to -2.

— Otherwise, the following applies.
— When the CAVLC parsing process is invoked for Intral 6x16DCLevel, luma4x4BlkIdx is set equal to O.
— When the CAVLC parsing process is invoked for CbIntral 6x16DCLevel, cb4x4BlklIdx is set equal to 0.
— When the CAVLC parsing process is invoked for CrIntral 6x16DCLevel, cr4x4BlkIdx is set equal to 0.
— The variables blkA and blkB are derived as follows.

— If the CAVLC parsing process is invoked for Intral 6x16DCLevel, Intral6x16ACLevel, or LumaLevel, the
process specified in subclause 6.4.10.4 is invoked with luma4x4BlkIdx as the input, and the output is
assigned to mbAddrA, mbAddrB, luma4x4BlkIdxA, and luma4x4BIlkIdxB. The 4x4 luma block specified
by mbAddrA\luma4x4BlkIldxA is assigned to blkA, and the 4x4 luma block specified by
mbAddrB\luma4x4BlkIdxB is assigned to blkB.

— Otherwise, if the CAVLC parsing process is invoked for Cblntral6x16DCLevel, CbIntral 6x16ACLevel, or
CbLevel, the process specified in subclause 6.4.10.6 is invoked with cb4x4Blkldx as the input, and the
output is assigned to mbAddrA, mbAddrB, cb4x4BlkIdxA, and cb4x4BlkIdxB. The 4x4 Cb block specified
by mbAddrA\cb4x4BIkldxA is assigned to blkA, and the 4x4 Cb block specified by
mbAddrB\cb4x4BlkIdxB is assigned to blkB.

210 ITU-T Rec. H.264 (03/2005)

— Otherwise, if the CAVLC parsing process is invoked for Crintral 6x16DCLevel, Crintral 6x16ACLevel, or
CrLevel, the process specified in subclause 6.4.10.6 is invoked with cr4x4Blkldx as the input, and the
output is assigned to mbAddrA, mbAddrB, cr4x4BlkIdxA, and cr4x4BIlkldxB. The 4x4 Cr block specified
by mbAddrA\cr4x4BlkIldxA is assigned to blkA, and the 4x4 Cr block specified by
mbAddrB\cr4x4BlkIdxB is assigned to blkB.

— Otherwise (the CAVLC parsing process is invoked for ChromaACLevel), the process specified in
subclause 6.4.10.5 is invoked with chroma4x4Blkldx as input, and the output is assigned to mbAddrA,
mbAddrB, chroma4x4BlkldxA, and chroma4x4BlkldxB. The 4x4 chroma block specified by
mbAddrA\iCbCr\chroma4x4BIkIdxA is assigned to blkA, and the 4x4 chroma block specified by
mbAddrB\iCbCr\chroma4x4BlkIdxB is assigned to blkB.

— Let nA and nB be the number of non-zero transform coefficient levels (given by TotalCoeff(coeff token)) in
the block of transform coefficient levels blkA located to the left of the current block and the block of transform
coefficient levels blkB located above the current block, respectively.

— With N replaced by A and B, in mbAddrN, blkN, and nN the following applies.

— If any of the following conditions is true, nN is set equal to 0.

mbAddrN is not available.

— The current macroblock is coded using an Intra prediction mode, constrained intra_pred flag is equal
to 1 and mbAddrN is coded using Inter prediction and slice data partitioning is in use (nal_unit type is
in the range of 2 to 4, inclusive).

— The macroblock mbAddrN has mb_type equal to P_Skip or B_Skip.

— All AC residual transform coefficient levels of the neighbouring block blkN are equal to 0 due to the
corresponding bit of CodedBlockPatternLuma or CodedBlockPatternChroma being equal to 0.

— Otherwise, if mbAddrN is an I PCM macroblock, nN is set equal to 16.

— Otherwise, nN is set equal to the value TotalCoeff(coeff token) of the neighbouring block blkN.

NOTE 1 — The values nA and nB that are derived using TotalCoeff(coeff token) do not include the DC
transform coefficient levels in Intra 16x16 macroblocks or DC transform coefficient levels in chroma blocks,
because these transform coefficient levels are decoded separately. When the block above or to the left belongs to
an Intra_16x16 macroblock, or is a chroma block, nA and nB is the number of decoded non-zero AC transform
coefficient levels.

NOTE 2 — When parsing for Intral6x16DCLevel, CbIntral6x16DCLevel, or Crintral6x16DCLevel, the values
nA and nB are based on the number of non-zero transform coefficient levels in adjacent 4x4 blocks and not on
the number of non-zero DC transform coefficient levels in adjacent 16x16 blocks.

— Given the values of nA and nB, the variable nC is derived as follows.
— If both mbAddrA and mbAddrB are available, the variable nC is set equal to (nA +nB +1)>> 1.
— Otherwise (mbAddrA is not available or mbAddrB is not available), the variable nC is set equal to nA + nB.

The value of TotalCoeff(coeff token) resulting from decoding coeff token shall be in the range of 0 to maxNumCoeff,
inclusive.

ITU-T Rec. H.264 (11/2007) 211

Table 9-5 — coeff_token mapping to Total Coeff(coeff_token) and TrailingOnes(coeff _token)

2= | 82 0<=nC<2 2<=nC<4 4<=nC<8 |8<=nC | nC==-1 nC==-2
0 0 1 11 111 0000 11 | 01 1
0 1 0001 01 0010 11 0011 11 000000 | 0001 11 | 0001 111
1 1 01 10 1110 000001 | 1 01
0 2 0000 0111 0001 11 0010 11 000100 | 000100 | 0001 110
1 2 0001 00 0011 1 01111 000101 [000110 | 0001 101
2 2 001 011 1101 0001 10 | 001 001
0 3 0000 0011 1 0000 111 0010 00 001000 | 0000 11 | 00000011 1
1 3 0000 0110 0010 10 01100 001001 | 0000011 | 0001 100
2 3 0000 101 0010 01 01110 001010 | 0000010 | 0001 011
3 3 0001 1 0101 1100 0010 11 | 000101 | 0000 1
0 4 0000 0001 11 0000 0111 0001 111 001100 | 000010 | 000000110
1 4 0000 00110 0001 10 0101 0 001101 | 00000011 | 00000010 1
2 4 0000 0101 0001 01 0101 1 001110 | 00000010 | 0001 010
3 4 0000 11 0100 1011 0011 11 | 0000 000 | 0000 01
0 5 0000 0000 111 0000 0100 0001 011 010000 | - 0000 0001 11
1 5 0000 0001 10 0000 110 01000 010001 | - 0000 0001 10
2 5 0000 0010 1 0000 101 0100 1 010010 | - 0000 0010 0
3 5 0000 100 00110 1010 010011 | - 0001 001
0 6 0000 0000 0111 1 0000 0011 1 0001 001 010100 | - 0000 0000 111
1 6 0000 0000 110 0000 0110 0011 10 010101 | - 0000 0000 110
2 6 0000 0001 01 0000 0101 0011 01 010110 | - 0000 0001 01
3 6 0000 0100 0010 00 1001 010111 | - 0001 000
0 7 0000 0000 0101 1 0000 0001 111 0001 000 011000 | - 0000 0000 0111
1 7 0000 0000 01110 | 0000 0011 0 0010 10 011001 | - 0000 0000 0110
2 7 0000 0000 101 0000 0010 1 0010 01 011010 | - 0000 0000 101
3 7 0000 0010 0 0001 00 1000 011011 | - 0000 0001 00
0 8 0000 0000 01000 | 0000 0001 011 0000 1111 011100 | - 0000 0000 0011 1
1 8 0000 0000 01010 | 0000 0001 110 0001 110 011101 | - 0000 0000 0101
2 8 0000 0000 0110 1 0000 0001 101 0001 101 011110 | - 0000 0000 0100
3 8 0000 0001 00 0000 100 01101 0TIl | - 0000 0000 100
0 9 0000 0000 0011 11 | 0000 0000 1111 0000 1011 1000 00 | -
1 9 0000 0000 0011 10 | 0000 0001 010 0000 1110 1000 01 | -
2 9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 | -
3 9 0000 0000 100 0000 0010 0 0011 00 1000 11 | -
212 ITU-T Rec. H.264 (03/2005)

Table 9-5 — coeff_token mapping to Total Coeff(coeff_token) and TrailingOnes(coeff _token)

2= | 82 0<=nC<2 2<=nC<4 4<=nC<8 |8<=nC | nC==-1 nC==-2
0 10 0000 0000 0010 11 | 0000 0000 1011 000001111 | 100100 | -
1 10 0000 0000 0010 10 | 0000 0000 1110 0000 1010 1001 01 | -
2 10 0000 0000 001101 | 0000 0000 1101 0000 1101 1001 10 | -
3 10 0000 0000 01100 | 0000 0001 100 0001 100 1001 11 | -
0 11 0000 0000 0001 111 | 0000 0000 1000 000001011 | 101000 | -
1 11 0000 0000 0001 110 | 0000 0000 1010 000001110 | 101001 | -
2 11 0000 0000 0010 01 | 0000 0000 1001 0000 1001 101010 | -
3 11 0000 0000 001100 | 0000 0001 000 0000 1100 101011 | -
0 12 0000 0000 0001 011 | 00000000 0111 1 | 000001000 | 101100 | -
1 12 0000 0000 0001 010 | 0000 000001110 | 000001010 | 101101 | -
2 12 0000 0000 0001 101 | 0000000001101 | 000001101 | 101110 | -
3 12 0000 0000 001000 | 0000 0000 1100 0000 1000 101111 | -
0 13 0000 0000 0000 1111 | 0000 0000 0101 1 | 0000001101 | 110000 | -
1 13 0000 0000 0000 001 | 0000 0000 01010 | 000000111 | 110001 | -
2 13 0000 0000 0001 001 | 0000 0000 0100 1 | 000001001 | 110010 | -
3 13 0000 0000 0001 100 | 0000 000001100 | 000001100 | 1100 11 | -
0 14 0000 0000 0000 1011 | 0000 0000 0011 1 | 00000010 01 | 110100 | -
1 14 0000 0000 0000 1110 | 0000 0000 0010 11| 0000 001100 | 110101 | -
2 14 0000 0000 0000 1101 | 0000 0000 00110 | 00000010 11 | 110110 | -
3 14 0000 0000 0001 000 | 0000 0000 01000 | 00000010 10 | 1101 11 | -
0 15 0000 0000 0000 0111 | 0000 0000 0010 01 | 0000 0001 01 | 111000 | -
1 15 0000 0000 0000 1010 | 0000 0000 0010 00 | 0000 001000 | 111001 | -
2 15 0000 0000 0000 1001 | 0000 0000 0010 10 | 0000 0001 11 | 111010 | -
3 15 0000 0000 0000 1100 | 0000 0000 0000 1 | 00000001 10 | 111011 | -
0 16 0000 0000 0000 0100 | 0000 0000 0001 11 | 0000 0000 01 | 111100 | -
1 16 0000 0000 0000 0110 | 0000 0000 0001 10 | 0000 0001 00 | 111101 | -
2 16 0000 0000 0000 0101 | 0000 0000 0001 01 | 00000000 11 | 111110 | -
3 16 0000 0000 0000 1000 | 0000 0000 0001 00 | 0000 0000 10 | 1111 11 | -

9.22 Parsing processfor level information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels
TotalCoeff(coeff token), and the number of trailing one transform coefficient levels TrailingOnes(coeff token).

Output of this process is a list with name level containing transform coefficient levels.

Initially an index i is set equal to 0. Then the following procedure is iteratively applied TrailingOnes(coeff token)
times to decode the trailing one transform coefficient levels (if any):

ITU-T Rec. H.264 (11/2007) 213

— A 1-bit syntax element trailing_ones_sign flag is decoded and evaluated as follows.
— Iftrailing ones_sign flag is equal to 0, the value +1 is assigned to level[i].
— Otherwise (trailing ones_sign flag is equal to 1), the value -1 is assigned to level[i].
— The index i is incremented by 1.
Following the decoding of the trailing one transform coefficient levels, a variable suffixLength is initialised as follows.

— If TotalCoeff(coeff token) is greater than 10 and TrailingOnes(coeff token) is less than 3, suffixLength is set
equal to 1.

— Otherwise (TotalCoeff(coeff token) is less than or equal to 10 or TrailingOnes(coeff token) is equal to 3),
suffixLength is set equal to 0.

The following procedure is then applied iteratively (TotalCoeff(coeff token) — TrailingOnes(coeff token)) times to
decode the remaining levels (if any):

— The syntax element level prefix is decoded as specified in subclause 9.2.2.1.

— The variable levelSuffixSize is set equal to the variable suffixLength with the exception of the following two
cases.

— When level prefix is equal to 14 and suffixLength is equal to 0, levelSuffixSize is set equal to 4.
— When level prefix is greater than or equal to 15, levelSuffixSize is set equal to level prefix - 3.
— The syntax element level suffix is decoded as follows.

— IflevelSuffixSize is greater than 0, the syntax element level suffix is decoded as unsigned integer
representation u(v) with levelSuffixSize bits.

— Otherwise (levelSuffixSize is equal to 0), the syntax element level suffix is inferred to be equal to 0.
— A variable levelCode is set equal to (Min(15, level prefix) << suffixLength) + level suffix.
— When level prefix is greater than or equal to 15 and suffixLength is equal to 0, levelCode is incremented by 15.
— When level prefix is greater than or equal to 16, levelCode is incremented by (1<<(level prefix — 3)) — 4096.

— When the index i is equal to TrailingOnes(coeff token) and TrailingOnes(coeff token) is less than 3, levelCode
is incremented by 2.

— The variable level[i] is derived as follows.

— IflevelCode is an even number, the value (levelCode + 2) >> 1 is assigned to level[i].

— Otherwise (levelCode is an odd number), the value (-levelCode — 1) >> 1 is assigned to level[i].
— When suffixLength is equal to 0, suffixLength is set equal to 1.

— When the absolute value of level[i] is greater than (3 << (suffixLength — 1)) and suffixLength is less than 6,
suffixLength is incremented by 1.

— The index i is incremented by 1.

9.2.2.1 Parsing processfor level_prefix
Inputs to this process are bits from slice data.
Output of this process is level prefix.

The parsing process for this syntax element consists in reading the bits starting at the current location in the bitstream
up to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This process is
specified as follows:

leadingZeroBits = -1

for(b = 0; 'b; leadingZeroBits++)
b =read bits(1)

level prefix = leadingZeroBits

Table 9-6 illustrates the codeword table for level prefix.

214 ITU-T Rec. H.264 (03/2005)

Table 9-6 — Codeword tablefor level_prefix (informative)

level_prefix | bit string
0 1
1 01
2 001
3 0001
4 0000 1
5 0000 01
6 0000 001
7 0000 0001
8 0000 0000 1
9 0000 0000 01
10 0000 0000 001
11 0000 0000 0001
12 0000 0000 0000 1
13 0000 0000 0000 01
14 0000 0000 0000 001
15 0000 0000 0000 0001

9.23 Parsing processfor run information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels
TotalCoeff(coeff token), and the maximum number of non-zero transform coefficient levels maxNumCoeff.

Output of this process is a list of runs of zero transform coefficient levels preceding non-zero transform coefficient
levels called run.

Initially, an index i is set equal to 0.
The variable zerosLeft is derived as follows.

— If the number of non-zero transform coefficient levels TotalCoeff(coeff token) is equal to the maximum number
of non-zero transform coefficient levels maxNumCoeff, a variable zerosLeft is set equal to 0.

— Otherwise (the number of non-zero transform coefficient levels TotalCoeff(coeff token) is less than the
maximum number of non-zero transform coefficient levels maxNumCoefY), total zeros is decoded and zerosLeft is
set equal to its value.

Let the variable tzVIcIndex be equal to TotalCoeff(coeff token).

The VLC used to decode total zeros is derived as follows:

If maxNumCoeff is equal to 4, one of the VLCs specified in Table 9-9 (a) is used.

— Otherwise, if maxNumCoeff is equal to 8§, one of the VLCs specified in Table 9-9 (b) is used.

— Otherwise (maxNumCoeff is not equal to 4 and not equal to 8), VLCs from Table 9-7 and 9-8 are used.
The following procedure is then applied iteratively (TotalCoeff(coeff token)— 1) times:

— The variable run[i] is derived as follows.

— If zerosLeft is greater than zero, a value run_before is decoded based on Table 9-10 and zerosLeft. run[i] is
set equal to run_before.

ITU-T Rec. H.264 (11/2007) 215

— Otherwise (zerosLeft is equal to 0), run[i] is set equal to 0.

— The value of run[i] is subtracted from zerosLeft and the result assigned to zerosLeft. The result of the subtraction
shall be greater than or equal to 0.

— The index i is incremented by 1.

Finally the value of zerosLeft is assigned to run[i].

Table 9-7 —total_zerostablesfor 4x4 blockswith tzViclndex 1to 7

total_zeros tzVlclndex
1 2 3 4 5 6 7
0 1 111 0101 00011 | 0101 0000 01 | 0000 01
1 011 110 111 111 0100 0000 1 0000 1
2 010 101 110 0101 0011 111 101
3 0011 100 101 0100 111 110 100
4 0010 011 0100 110 110 101 011
5 0001 1 0101 0011 101 101 100 11
6 0001 0 0100 100 100 100 011 010
7 0000 11 0011 011 0011 011 010 0001
8 0000 10 0010 0010 011 0010 0001 001
9 0000 011 0001 1 0001 1 0010 00001 | 001 0000 00
10 0000 010 00010 | 00010 | 00010 | 0001 0000 00
11 0000 0011 0000 11 | 0000 01 | 00001 [0000 O
12 0000 0010 0000 10 | 0000 1 0000 0
13 0000 0001 1 | 0000 01 | 0000 00
14 0000 0001 0 | 0000 00
15 0000 0000 1

216 ITU-T Rec. H.264 (03/2005)

Table 9-8 —total_zerostablesfor 4x4 blocks with tzVicindex 8to 15

total_zeros tzVlclndex
8 9 10 11 12 13 14 | 15
0 0000 01 | 000001 | 00001 | 0000 [0000 | 000 [00 | O
1 0001 0000 00 | 00000 [0001 | 0001 | 001 | O1 | 1
2 0000 1 0001 001 001 01 1 1
3 011 11 11 010 1 01
4 11 10 10 1 001
5 10 001 01 011
6 010 01 0001
7 001 0000 1
8 0000 00

Table 9-9 —total_zerostablesfor chroma DC 2x2 and 2x4 blocks

(a) Chroma DC 2x2 block (4:2:0 chroma sampling)

tzVicindex
total_zeros
1 2 3
0 1 1 1
1 01 01 0
2 001 00
3 000

(b) Chroma DC 2x4 block (4:2:2 chroma sampling)

tzVicindex
total_zeros

1 2 3 4 5 6 7
0 1 000 000 110 00 00 0
1 010 01 001 00 01 01 1
2 011 001 01 01 10 1
3 0010 100 10 10 11
4 0011 101 110 111
5 0001 110 111
6 00001 | 111
7 0000 0

I TU-T Rec. H.264 (11/2007)

217

Table9-10 - Tablesfor run_before

run_before | zerosLeft
112 |3 |4 5 6 >6
0 111 11 | 11 11 11 111
1 0{0l|10]|10 |10 | 000 | 110
2 -1 00]| 01|01 |oO0Il]| o001 | 101
3 - - 00 | 001 | 010 | O11 | 100
4 - |- |- |000] o001 | 010|011
5 == - |- 000 | 101 | 010
6 - - |- |-] 100 001
7 - - - - - 0001
8 - - - - - 00001
9 - |- - - - - 000001
10 - - -] - - 0000001
11 - - -] - - 00000001
12 - - - - - - 000000001
13 - - -] - - 0000000001
14 - -] - - 00000000001

9.24 Combining level and run infor mation

Input to this process are a list of transform coefficient levels called level, a list of runs called run, and the number of
non-zero transform coefficient levels TotalCoeff(coeff token).

Output of this process is an list coeffLevel of transform coefficient levels.

A variable coeffNum is set equal to -1 and an index i is set equal to (TotalCoeff(coeff token) — 1). The following
procedure is iteratively applied TotalCoeff(coeff token) times:

— coeffNum is incremented by run[i] + 1.
— coeffLevel[coeffNum] is set equal to level[i].

— The index i is decremented by 1.

9.3 CABAC parsing processfor dice data

This process is invoked when parsing syntax elements with descriptor ae(v) in subclauses 7.3.4 and 7.3.5 when
entropy coding mode flag is equal to 1.

Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements.
Output of this process is the value of the syntax element.

When starting the parsing of the slice data of a slice in subclause 7.3.4, the initialisation process of the CABAC parsing
process is invoked as specified in subclause 9.3.1.

The parsing of syntax elements proceeds as follows:
For each requested value of a syntax element a binarization is derived as described in subclause 9.3.2.

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as
described in subclause 9.3.3.

218 ITU-T Rec. H.264 (03/2005)

For each bin of the binarization of the syntax element, which is indexed by the variable binldx, a context index ctxIdx is
derived as specified in subclause 9.3.3.1.

For each ctxIdx the arithmetic decoding process is invoked as specified in subclause 9.3.3.2.

The resulting sequence (by .. bpinigx) of parsed bins is compared to the set of bin strings given by the binarization
process after decoding of each bin. When the sequence matches a bin string in the given set, the corresponding value is
assigned to the syntax element.

In case the request for a value of a syntax element is processed for the syntax element mb_type and the decoded value
of mb_type is equal to I PCM, the decoding engine is initialised after the decoding of any pcm_alignment zero bit and
all pcm_sample luma and pcm_sample chroma data as specified in subclause 9.3.1.2.

The whole CABAC parsing process is illustrated in the flowchart of Figure 9-1 with the abbreviation SE for syntax
element.

CABACParsing(SE)

Yesﬁ
Initialisation of
context variables

v
No Initialisation of
decoding engine
]

A4

Get Binarization(SE)

binldx++

hb

Get ctxldx(binldx)

l

DecodeBin(ctxldx)

(bgsensbyig,) N
Binarization(SE) ?

== mb_type
&& value(b,...,b,; ..) ==

Yesﬁ
I_PCM?

Initialisation of

decoding engine
No ‘

Figure9-1—Illustration of CABAC parsing processfor a syntax element SE (infor mative)

9.3.1 Initialisation process
Outputs of this process are initialised CABAC internal variables.

The processes in subclauses 9.3.1.1 and 9.3.1.2 are invoked when starting the parsing of the slice data of a slice in
subclause 7.3.4.

ITU-T Rec. H.264 (11/2007) 219

The process in subclause 9.3.1.2 is also invoked after decoding any pcm_alignment zero_bit and all pcm_sample luma
and pcm_sample chroma data for a macroblock of type I PCM.

9.3.1.1 Initialisation processfor context variables
Outputs of this process are the initialised CABAC context variables indexed by ctxIdx.

Table 9-12 to Table 9-33 contain the values of the variables n and m used in the initialisation of context variables that
are assigned to all syntax elements in subclauses 7.3.4 and 7.3.5 except for the end-of-slice flag.

For each context variable, the two variables pStateldx and valMPS are initialised.

NOTE 1 — The variable pStateldx corresponds to a probability state index and the variable valMPS corresponds to the value of
the most probable symbol as further described in subclause 9.3.3.2.

The two values assigned to pStateldx and valMPS for the initialisation are derived from SliceQPy, which is derived in
Equation 7-28. Given the two table entries (m, n),

1. preCtxState = Clip3(1, 126, ((m * Clip3(0, 51, SliceQPy))>>4)+n)
2. if(preCtxState <= 63) {
pStateldx = 63 - preCtxState
valMPS =0
} else {
pStateldx = preCtxState - 64
valMPS =1
}

In Table 9-11, the ctxIdx for which initialisation is needed for each of the slice types are listed. Also listed is the table
number that includes the values of m and n needed for the initialisation. For P, SP and B slice type, the initialisation
depends also on the value of the cabac init idc syntax element. Note that the syntax element names do not affect the
initialisation process.

Table 9-11 — Association of ctxldx and syntax elementsfor each dicetypein theinitialisation process

Slicetype
Syntax element Table
Sl | P, SP B
. Table 9-13
‘ mb_skip flag Table 9-14 11-13 24-26
slice_data()
mb_field decoding_flag Table 9-18 70-72 70-72 70-72 70-72
Table 9-12
mb_type Table 9-13 0-10 3-10 14-20 27-35
Table 9-14
transform_size 8x8 flag Table 9-16 na 399-401 399-401 399-401
macroblock_layer()
coded_block pattern (luma) Table 9-18 73-76 73-76 73-76 73-76
coded_block_pattern (chroma) Table 9-18 77-84 77-84 77-84 77-84
mb_gp_delta Table 9-17 60-63 60-63 60-63 60-63
prev_intrad4x4 pred_mode_flag Table 9-17 68 68 68 68
rem_intra4x4 pred_mode Table 9-17 69 69 69 69
mb_pred() prev_intra8x8 pred mode flag Table 9-17 na 68 68 68
rem_intra8x8 pred_mode Table 9-17 na 69 69 69
intra_chroma pred mode Table 9-17 64-67 64-67 64-67 64-67

220 ITU-T Rec. H.264 (03/2005)

Table 9-11 — Association of ctxldx and syntax elementsfor each dicetypein theinitialisation process

Slicetype
Syntax element Table
sl [P, SP B
ref idx_10 Table 9-16 54-59 54-59
ref idx 11 Table 9-16 54-59
11b_prod() and mvd_10[J[][0] Table 9-15 40-46 40-46
b mb_pred
sub_mb_pred() mvd 1[][][0] Table 9-15 40-46
mvd 10[][][1] Table 9-15 47-53 47-53
mvd 11[][][1] Table 9-15 47-53
Table 9-13
sub_mb_pred() sub_mb_type 21-23 36-39
Table 9-14
Table 9-18 85-104 85-104 85-104 85-104
coded block flag Table 9-25 460-483 460-483 460-483 460-483
Table 9-33 1012-1023 | 1012-1023 | 1012-1023
Table 9-19 105-165 105-165 105-165 105-165
Table 9-22 277-337 277-337 277-337 277-337
Table 9-24 402-416 402-416 402-416
significant_cooff flag] | Table 9-24 436-450 436-450 436-450
g _coetl_llag Table 9-26 484-571 484-571 484-571
Table 9-30 776-863 776-863 776-863
Table 9-28 660-689 660-689 660-689
Table 9-29 718-747 718-747 718-747
residual_block cabac() Table 9-20 166-226 166-226 166-226 166-226
Table 9-23 338-398 338-398 338-398 338-398
Table 9-24 417-425 417-425 417-425
last_significant_cooff flag[| Table 9-24 451-459 451-459 451-459
ast_signihicant_cocti_tiag Table 9-27 572-659 572-659 572-659
Table 9-31 864-951 864-951 864-951
Table 9-28 690-707 690-707 690-707
Table 9-29 748-765 748-765 748-765
Table 9-21 227-275 227-275 227-275 227-275
Table 9-24 426-435 426-435 426-435
coeff _abs_level minus[] Table 9-32 952-1011 952-1011 952-1011
Table 9-28 708-717 708-717 708-717
Table 9-29 766-775 766-775 766-775

NOTE 2 — ctxIldx equal to 276 is associated with the end_of slice flag and the bin of mb_type, which specifies the I PCM
macroblock type. The decoding process specified in subclause 9.3.3.2.4 applies to ctxIdx equal to 276. This decoding process,
however, may also be implemented by using the decoding process specified in subclause 9.3.3.2.1. In this case, the initial values
associated with ctxIdx equal to 276 are specified to be pStateldx =63 and valMPS =0, where pStateldx = 63 represents a
non-adapting probability state.

Table 9-12 —Values of variablesm and n for ctxldx from Oto 10

Initialisation ctxl dx

variables 0 1 2 3 4 5 6 7 8 9 10
m 20 2 3 20 2 3 28 | 23 | w6 1 7
n as | os4 | 74 | a5 | sa | 74 | 127 | 104 | 53 sa | 51

ITU-T Rec. H.264 (11/2007) 221

Table 9-13 —Values of variablesm and n for ctxldx from 11 to 23

Valge_of_ Initidi%tion ctxldx
cabac Init idc | variables | o | g5 | g4 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 2 | 23
0 m 3 | 23 | 2 1 o | 37| 5 | 3| -1 1 2| 4 | 17
n 33 2 0 9 40 |18 | 57 | 8 | 65 | 62 | 4 | 73 | 50
1 m 2 | 3 | 16 | 2 4 | 29 | 2 6 | 13| s 9 3 | 10
n 25 0 0 9 a1 | s | es | 7| 79 | 2 | s0 | 70 | s4
2 m 20 | 25 | 14 | a0 | 3 | 27| 26 | 4 | 24| 5 6 | 17 | 14
n 16 | o 0 | st | 6 | 9 | 16 | 85 [102 | 57 | 57| 713 | 57
Table 9-14 — Values of variablesm and n for ctxldx from 24 to 39
Valueof | Initialisation otxidx
cabac Init idc | - variables | o) | o5 | 56 | 57 | 28 | 20 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 30
0 m 18] 9 | 20|26 16| 9 |46]20]|1|-3]11|1]6]|-17|-6]09
n 64 | 43| 0 | 67 | 90 | 104|127 | 104 | 67 | 78 | 65 | 62 | 86 | 95 | 61 | 45
1 m 26 | 19 | 40 | 57| 41 | 26 | 45|15 4] 6|13 5|6 |-13] 0| 8
n 2 0] 2 |36 |6 [127|100] 76| 70|79 52|60 9 | 52| 43
2 m 20 20| 20| 54 |37 | 12322 2] 4|25 |6|-14|6]| 4
n 40 | 10| 0o | o |4 |97 127|117 74| 8 |[102] 57| 93 | 88 | 44 | 55
Table 9-15—Values of variablesm and n for ctxldx from 40to 53
VaIL_Je_of_ Initia_lisation otxl dx
cabac init ide | - variables |, | 4 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53
0 m 30 6 |1] 6 | 7] 5] 2 o | 3| -0] 5| 4| 3| o0
n 60 | 81 | 96 | 55 | 67 | 86 | 88 | 58 | 76 | 94 | 54 | 69 | 81 | 88
1 m 2 | 5 | 0] 2 2 | 3| 3 1 3 6| o] 3| 7] s
n 60 | 82 | 96 | 50 | 75 | 87 | 100 | s6 | 74 | 85 | 59 | 81 | 8 | 95
2 m At | a5 | 21 | 19 | 20 | 4 6 1l s | s | e | 3| o4
n 890 | 103 | 116 | 57 | 58 | 84 | 96 | 63 | 8 | 106 | 63 | 75 | 90 | 101
222 ITU-T Rec. H.264 (03/2005)

Table 9-16 — Values of variablesm and n for ctxldx from 54 to 59, and 399 to 401

ctxldx
Value of cabac_init_idc | Initialisation variables
54 | 55| 56 | 57 | 58 | 59 | 399 | 400 | 401
| dices m na | na|na| na | na| na/ 31 31 25
n na | na|na| na |na|naj 21 31 50
0 m 7 -5 | 4 -5 -7 1 12 11 14
n 67 | 74 | 74| 80 | 72 | 58 | 40 51 59
1 m -1 -1 1 -2 -5 0 25 21 21
n 66 | 77 | 70 | 86 | 72 | 61 32 49 54
2 m 3 402|127 1 21 19 17
n 55179175 97 | 50 | 60 | 33 50 61
Table9-17 — Values of variables m and n for ctxldx from 60 to 69
Initialisation ctxidx
variables |6y | 61 | 62 | 63 | 64 | e | e | 67 | 68 | 69
m 0 0 0 0 -9 4 0 -7 13 3
n 41 63 63 63 83 86 97 72 41 62

I TU-T Rec. H.264 (11/2007)

223

Table 9-18 — Values of variablesm and n for ctxldx from 70 to 104

| and S| Value of cabac_init_idc Value of cabac init_idc
) | and S|
slices slices
ctxldx 0 1 2 ctxldx 0 1 2
m n m n m n m n m n m n m n m n

70 0 11 0 45 13 15 7 34 88 -11 | 115 | -13 | 108 | -4 92 5 78

71 1 55 -4 78 7 51 -9 88 89 -12 | 63 -3 46 0 39 -6 55

72 0 69 -3 96 2 80 | -20 | 127 90 -2 68 -1 65 0 65 4 61

73 -17 | 127 | 27 | 126 | -39 | 127 | -36 | 127 91 -15 | 84 -1 57 | -15 | 84 | -14 | 83

74 -13 1102 | -28 | 98 | -18 | 91 | -17 | 91 92 -13 1 104 | -9 93 | 35 | 127 | -37 | 127

75 0 82 | 25| 101 | -17 | 96 | -14 | 95 93 -3 70 -3 74 -2 73 -5 79

76 -7 74 | 23| 67 | -26 | 81 | -25 | 84 94 -8 93 -9 92 | -12 | 104 | -11 | 104

7 -21 | 107 | -28 | 82 | -35| 98 | -25 | 86 95 -10 | 90 -8 87 -9 91 | -11 | 91

78 -27 | 127 | 20 | 94 | -24 | 102 | -12 | &9 96 -30 | 127 | -23 | 126 | -31 | 127 | -30 | 127

79 -31 (127 | -16 | 83 | -23 | 97 | -17 | 91 97 -1 74 5 54 3 55 0 65
80 -24 | 127 | -22 | 110 | -27 | 119 | -31 | 127 98 -6 97 6 60 7 56 -2 79
81 18 | 95 | 21| 91 | 24| 99 | -14 | 76 99 -7 91 6 59 7 55 0 72

82 -27 | 127 | -18 | 102 | -21 | 110 | -18 | 103 100 20 | 127 | 6 69 8 61 -4 92

83 -21 (114 | -13 | 93 | -18 | 102 | -13 | 90 101 -4 56 -1 48 -3 53 -6 56

84 =30 | 127 | 29 | 127 | -36 | 127 | -37 | 127 102 -5 82 0 68 0 68 3 68

85 -17 {123 | -7 92 0 80 11 80 103 -7 76 -4 69 -7 74 -8 71

86 12 (115 | -5 89 -5 89 5 76 104 -22 | 125 | -8 88 -9 88 | -13 | 98

87 -16 | 122 | -7 96 -7 94 2 84

224 ITU-T Rec. H.264 (03/2005)

Table 9-19 —Values of variablesm and n for ctxldx from 105 to 165

| and S| Value of cabac_init_idc Value of cabac _init_idc
slices ! ZTSESSI
ctxldx 0 1 ctxldx 0 1 2

m n m n m n m | n m n mi|n|{m/|fn|m n
105 -7 93 -2 85 | -13 | 103 | -4 | 86 136 -13 | 101 5 53 0 58| -5 75
106 -11 | 87 -6 78 | -13 | 91 | -12 | 88 137 -13 | 91 2 (61| -1 |60 -8 80
107 -3 77 -1 75 -9 89 -5 | 82 138 -12 | 94 0 56 | -3 | 61 | -21 83
108 -5 71 -7 77 | -14 | 92 3072 139 -10 | 88 0 56 | -8 | 67 | -21 64
109 -4 63 2 54 -8 76 -4 | 67 140 -16 | 84 | -13 | 63 | -25 | 84 | -13 | 31
110 -4 68 5 50 | -12 | 87 8|72 141 -10 | 86 S5 160 | -14 | 74 | 25 | 64
111 -12 | 84 -3 68 | -23 | 110 | -16 | 89 142 -7 83 -1 (62| -5 65|29 %4
112 -7 62 1 50 | 24 | 105 | -9 | 69 143 -13 | 87 4 57 5 52 9 75
113 -7 65 6 42 | -10 | 78 -1 59 144 -19 | 94 -6 | 69 2 57 | 17 63
114 8 61 -4 81 | -20 | 112 5 66 145 1 70 4 57 0 61 | -8 74
115 5 56 1 63 -17 99 4 57 146 0 72 14 {39 9 |69 -5 35
116 2 66 -4 70 | 78 | 127 | 4 | 71 147 -5 74 4 51| -11 170 | -2 27
117 1 64 0 67 | -70 | 127 | 2 | 71 148 18 59 13 | 68 | 18 | 55 13 91
118 0 61 2 57 | -50 | 127 2 58 149 -8 102 3 64 | 4 |71 3 65
119 2 78 -2 76 | 46 | 127 | -1 | 74 150 -15 | 100 1 61 0 58 | -7 69
120 1 50 11 35 -4 66 -4 | 44 151 0 95 9 63 7 61 8 77
121 7 52 4 64 -5 78 -1 | 69 152 -4 75 7 50 9 41 | -10 | 66
122 10 35 1 61 -4 71 0 62 153 2 72 16 | 39 | 18 | 25 3 62
123 0 44 11 35 -8 72 -7 | 51 154 -11 | 75 5 44 9 32 3 68
124 11 38 18 25 2 59 -4 | 47 155 -3 71 4 52 5 43 | -20 | 81
125 1 45 12 24 -1 55 -6 | 42 156 15 46 11 | 48 9 47 0 30
126 0 46 13 29 -7 70 -3 | 41 157 -13 | 69 -5 | 60 0 44 1 7
127 5 44 13 36 -6 75 -6 | 53 158 0 62 -1 59 0 51| -3 23
128 31 17 | -10 | 93 -8 89 8 76 159 0 65 0 59 2 46 | -21 74
129 1 51 -7 73 | 34 | 119 | 9 | 78 160 21 37 22 (33| 19 | 38| 16 66
130 7 50 -2 73 -3 75 | -11 | 83 161 15| 72 5 44| 4 | 66 | -23 | 124
131 28 19 13 46 32 20 9 52 162 9 57 14 [43 | 15 | 38| 17 37
132 16 33 9 49 30 22 0 67 163 16 54 -1 [78 | 12 | 42 | 44 | -18
133 14 62 -7 100 | -44 | 127 | -5 | 90 164 0 62 0 60 9 34| 50 | -34
134 -13 | 108 9 53 0 54 1 67 165 12 72 9 69 0 89 | -22 | 127
135 -15 | 100 2 53 -5 61 -15 | 72

I TU-T Rec. H.264 (11/2007)

225

Table 9-20 — Values of variablesm and n for ctxldx from 166 to 226

| and S| Value of cabac_init_idc Value of cabac init_idc
. | and S
slices dices
ctxldx 0 1 2 ctxldx 0 1 2
m n m | n m n m n m n m n m n m n

166 241 0 11 | 28 4 45 | 4 | 39 197 26 | -17 | 28 3 36 | -28 | 28 -3

167 15| 9 2 140 | 10 | 28 | O | 42 198 30 | -25 | 28 4 38 | -28 | 24 10

168 8 | 25 3 (44| 10 | 31 7 | 34 199 28 | -20 | 32 0 38 | 27 | 27 0

169 13 18| 0 |49 33 | -11 | 11| 29 200 33 | -23 34| -1 34 | -18 | 34 | -14

170 15| 9 0 |46 | 52 | 43| 8 | 31 201 37 | -27 | 30 6 35 | -16 | 52 | -44

171 1319 | 2 |44 18 15 6 | 37 202 33| -23 | 30 6 34 | -14 | 39 | 24

172 10 | 37 | 2 | 51| 28 0 7| 42 203 40 | -28 | 32 9 32 -8 19 17

173 12 | 18 0 |47 | 35 |22 3 40 204 38 | -17 | 31 19 37 -6 31 25

174 6 | 29| 4 |39) 38 [-25] 8 | 33 205 33| -11 [26| 27 | 35 0 36 | 29

175 20 | 33 2 |62 34 0 13| 43 206 40 | -15 126 | 30 | 30 10 | 24 | 33

176 1530 | 6 |46 | 39 | -18 | 13| 36 207 41 | -6 | 37| 20 | 28 18 34 15

177 4 |45 | 0 |54 32 |-12 | 4 | 47 208 38 1 28 | 34 | 26 | 25 30 | 20

178 1 58 3 (54102 -94 | 3 55 209 41 | 17 | 17| 70 | 29 | 41 22 73

179 0| 62 | 2 |58 0 0 2 | 58 210 30 | -6 1 67 0 75 | 20 | 34

180 7 61 4 |63 | 56 | -15] 6 | 60 211 271 3 5 59 2 72 19 31

181 12 | 38 6 |51 33 -4 8 | 44 212 26 | 22 | 9 67 8 77 | 27 | 44

182 11 | 45 6 | 57| 29 10 | 11 | 44 213 37| -16 | 16 | 30 14 | 35 19 16

183 15 | 39 7 | 53| 37 S5 14 42 214 351 4 | 18| 32 18 31 15 36

184 11 | 42 6 |52 51 |29 7 | 48 215 38| -8 | 18 | 35 17 | 35 15 36

185 13| 44 | 6 | 55| 39 -9 4 | 56 216 38 -3 122 29 | 21 30 | 21 28

186 16 | 45 | 11 | 45| 52 | -34 | 4 52 217 371 3 24 | 31 17 | 45 25 21

187 12 | 41 | 14|36 | 69 | -58 | 13| 37 218 38 5 |23 | 38 | 20 | 42 | 30 | 20

188 10| 49 | 8 | 53| 67 | -63 | 9 | 49 219 421 0 18 | 43 18 | 45 31 12

189 30| 34 | -1 | 82 | 44 5 | 19| 58 220 35| 16 | 20 | 41 27 | 26 | 27 16

190 18 | 42 | 7 | 55| 32 7 10 | 48 221 39 | 22 | 11| 63 16 | 54 | 24 | 42

191 10 | 55 | -3 | 78| 55 | 29 | 12| 45 222 14 | 48 9 59 7 66 0 93

192 17 | 51 | 15| 46 | 32 1 0 | 69 223 27 | 37 | 9 64 16 56 14 | 56

193 17 | 46 | 22 | 31 0 0 |20 33 224 21 | 60 | -1 94 11 73 15 57

194 0|8 | -1 |8 | 27 | 36 | 8 | 63 225 12 | 68 | -2 | &9 10 | 67 | 26 | 38

195 26 | <19 | 25| 7 33 | 25 | 35 | -18 226 2 97 | -9 | 108 | -10 | 116 | -24 | 127

196 22 | <17 | 30 | -7 | 34 | -30 | 33 | -25

226 ITU-T Rec. H.264 (03/2005)

Table 9-21 —Values of variablesm and n for ctxldx from 227 to 275

| and S| Value of cabac _init_idc Value of cabac _init_idc
slices ! ZTSESSI
ctxldx 1 2 ctxldx 0 1 2

m|{n | m n m n m n m n m i |n|{m/|n|m n
227 -3 71 -6 76 | 23 | 112 | -24 | 115 252 -12 | 73 -6 55 (-16 | 72 | -14 | 75
228 6 [42| 2 44 | -15 | 71 | 22| 82 253 -8 76 0 58 -7 | 69 | -10 | 79
229 -5 | 50 0 45 -7 61 -9 62 254 -7 80 0 64| 4 169 -9 83
230 3| 54 0 52 0 53 0 53 255 -9 88 S|4 5 |74 -12] 92
231 2 1 62| -3 64 -5 66 0 59 256 -17 | 110 | -10 [90 | -9 | 86 | -18 | 108
232 0 58 | -2 59 | -11 | 77 | -14 | 85 257 -11 | 97 0 70 2 66 | -4 79
233 1 63 | 4 70 -9 80 | -13 | 89 258 20 | 84 4 129 9 [34|22 69
234 2 (72| 4 75 -9 84 | -13 | %4 259 -1 79 5 31 1 32 |-16 | 75
235 -1 [74 -8 82 | -10 | 87 | -11 | 92 260 -6 73 7 42 | 11 | 31| 2 58
236 9 [91 | -17 | 102 | -34 | 127 | -29 | 127 261 -4 74 1 59 5 52 1 58
237 S 167 -9 77 | -21 | 101 | -21 | 100 262 -13 | 86 2 [58| -2 |55 |-13 | 78
238 501027 3 24 -3 39 | -14 | 57 263 -13 | 96 S0 72 2 |67 -9 83
239 3139 0 42 -5 53 | -12 | 67 264 -11 | 97 -3 | 81 0 73 | 4 81
240 2 | 44 0 48 -7 61 | -11 | 71 265 19 | 117 | -11 [97 | -8 | 89 | -13 | 99
241 0 46 0 55 | -11 | 75 | -10 | 77 266 -8 78 0 58 3 52 | -13 | 81
242 -16 | 64 | -6 59 | -15 | 77 | 21 | 85 267 -5 33 8 5 7 4 -6 38
243 -8 | 68| -7 71 | -17 | 91 | -16 | 88 268 -4 48 10 [14 | 10 8 | -13 | 62
244 -10 | 78 | <12 | 83 | -25 | 107 | -23 | 104 269 -2 53 14 [18 | 17 8 -6 58
245 -6 | 77 | -11 87 | 25 | 111 | -15 | 98 270 -3 62 13 (27|16 | 19| -2 59
246 -10 | 86 | -30 | 119 | -28 | 122 | -37 | 127 271 -13 1 71 2 40 3 37 1-16 | 73
247 -12] 92 1 58 | -11 | 76 | -10 | 82 272 -10 | 79 0 58 | -1 | 61 | -10 | 76
248 15155 3 29 | -10 | 44 -8 48 273 -12 | 86 370 -5 | 73| -13 | 86
249 -10 | 60 | -1 36 | -10 | 52 -8 61 274 -13 90 6 | 79| -1 70 | -9 83
250 -6 | 62 1 38 | -10 | 57 -8 66 275 -14 | 97 -8 |8 | 4 | 78 | -10 | &7
251 -4 | 65 2 43 -9 58 -7 70

I TU-T Rec. H.264 (11/2007)

227

228

Table 9-22 —Values of variablesm and n for ctxldx from 277 to 337

| and S| Value of cabac_init_idc Value of cabac _init_idc
slices : ngesSI
ctxldx 1 2 ctxldx 0 1 2

m n m n m n m n mi | n|{m|n|m/|n|m]|n
277 -6 93 | -13 | 106 | -21 | 126 | -22 | 127 308 -16 | 96 | -1 | 51 | -16 | 77 | -10 | 67
278 -6 84 | -16 | 106 | -23 | 124 | -25 | 127 309 7 | 88 | 7 149 | 2 | 64 1 68
279 -8 79 | -10 | 87 | -20 | 110 | -25 | 120 310 -8 |8 | 8 | 52 2 61 0 77
280 0 66 | -21 | 114 | 26 | 126 | -27 | 127 311 7 18 | 9 |41 | -6 | 67 2 64
281 -1 71 | -18 | 110 | -25 | 124 | -19 | 114 312 9 [8 | 6 |47 | -3 | 64 0 68
282 0 62 | -14 | 98 | -17 | 105 | -23 | 117 313 -13 18 | 2 |55 2 571 -5 |78
283 -2 60 | 22 | 110 | -27 | 121 | -25 | 118 314 4 66 | 13 [41 | -3 | 65 7 55
284 -2 59 | =21 | 106 | -27 | 117 | -26 | 117 315 3 [7711044 -3 | 66 5 59
285 -5 75 | -18 | 103 | -17 | 102 | -24 | 113 316 3176 6 | 50 0 62 2 65
286 -3 62 | -21 | 107 | 26 | 117 | -28 | 118 317 6 |76 | 5 | 53 9 511 14 | 54
287 -4 58 | -23 | 108 | -27 | 116 | -31 | 120 318 10 [S8 | 13 149 | -1 |66 | 15 | 44
288 -9 66 | 26 | 112 | -33 | 122 | -37 | 124 319 -1 (76 4 163 2 |71 5 60
289 -1 79 | -10 | 96 | -10 | 95 | -10 | 94 320 -1 83| 6 |64 | -2 |75 2 70
290 0 71 | -12 | 95 | -14 | 100 | -15 | 102 321 7199|2169 -1 | 70| -2 |76
291 3 68 -5 91 -8 95 | -10 | 99 322 14195 -2 (59| -9 (72| -18 | 8
292 10 44 -9 93 | -17 | 111 | -13 | 106 323 2 95| 6 [70| 14 [60 | 12 | 70
293 -7 62 | 22 | 94 | 28 | 114 | -50 | 127 324 0 76 | 10 | 44 | 16 | 37 5 64
294 15 36 -5 86 -6 89 -5 92 325 S 174 9 |31 0 47 | -12 | 70
295 14 40 9 67 2 80 17 57 326 0 70 | 12 [43 | 18 [35| 11 | 55
296 16 27 -4 80 -4 82 -5 86 327 11)75 3 | 53| 11 | 37 5 56
297 12 29 | -10 | 85 -9 85 | -13 | 94 328 1 68 | 14 | 34 | 12 | 41 0 69
298 1 44 -1 70 -8 81 | -12 | 91 329 0 65 | 10 | 38 | 10 | 41 2 65
299 20 36 7 60 -1 72 -2 77 330 -14 1 73 | -3 | 52 2 48 | -6 | 74
300 18 32 9 58 5 64 0 71 331 3 62 | 13 | 40 | 12 | 41 5 54
301 5 42 5 61 1 67 -1 73 332 4 62 | 17 | 32| 13 | 41 7 54
302 1 48 12 50 9 56 4 64 333 -1 [68| 7 | 44 0 591 -6 | 76
303 10 62 15 50 0 69 -7 81 334 13175 7 | 38 3 50 | -11 | 82
304 17 46 18 49 1 69 5 64 335 11 [55|13 |50 | 19 |40 | -2 | 77
305 9 64 17 54 7 69 15 57 336 5 64 | 10 | 57 3 66 | -2 77
306 -12 1 104 | 10 41 -7 69 1 67 337 12 | 70 | 26 | 43 | 18 | 50 | 25 | 42
307 -11 97 7 46 -6 67 0 68

ITU-T Rec. H.264 (03/2005)

Table 9-23 —Values of variablesm and n for ctxldx from 338 to 398

| and S| Value of cabac_init_idc Value of cabac init_idc
s s
ctxldx 0 1 2 ctxldx 0 1 2

m n m n m| n |mj|n m| n |[m|n|m]|n m n
338 15 6 14 11 19| -6 | 17 | -13 369 32 26 | 31| -4 |40 | -37 | 37 | -17
339 6 19 11 14 18] -6 | 16| -9 370 37 1-30 | 27| 6 | 38| -30 | 32 1
340 7 16 9 11 14 0 17 | -12 371 44 | 32 | 34| 8 |46 | -33 | 34 15
341 12 14 18 11 |26 | -12 | 27 | -21 372 34 | -18 | 30 | 10 | 42 | -30 | 29 15
342 18 13 21 9 31 | -16 | 37 | -30 373 34 | -15 |24 (22|40 | 24| 24 25
343 13 11 23 2 | 33| 25| 41 | 40 374 40 | -15 |33 | 19 | 49 | -29 | 34 22
344 13 15 32 | -15 | 33| 22 | 42 | 41 375 33 -7 |22 (32|38 -12| 31 16
345 15 16 32 | -15 | 37 | 28 | 48 | 47 376 35 -5 | 26|31 |40]| -10| 35 18
346 12 23 34 | 21 [39| -30 | 39| -32 377 33 0 21 | 41 | 38| -3 31 28
347 13 23 39 | 23 | 42 | 30 | 46 | 40 378 38 2 26 | 44 | 46 | -5 33 41
348 15 20 42 | 33 | 47 | 42 | 52 | -51 379 33 | 13 | 23 | 47 | 31| 20 | 36 28
349 14 26 41 | 31 | 45 | -36 | 46 | -41 380 23 | 35 |16 | 65|29 | 30 | 27 47
350 14 44 46 | -28 | 49 | -34 | 52 | -39 381 1358 | 14|71 25] 44 | 21 62
351 17 40 38 | -12 | 41 | -17 | 43 | -19 382 29 | -3 8 | 60 | 12 | 48 18 31
352 17 47 21 29 | 32 9 32 | 11 383 26 0 6 | 63 | 11 | 49 19 26
353 24 17 45 | 24 | 69 | -71 | 61 | -55 384 22| 30 | 17 | 65 | 26 | 45 36 24
354 21 21 53 | 45 | 63 | -63 | 56 | -46 385 31 -7 |21 |24 |22] 22| 24 23
355 25 22 48 | -26 | 66 | -64 | 62 | -50 386 35 (-15 |23 (20|23 | 22 | 27 16
356 31 27 65 | 43 | 77 | -74 | 81 | -67 387 341 -3 | 262327 21 24 30
357 22 29 43 | -19 | 54 | -39 | 45 | -20 388 34 3 27 | 32 (33| 20 | 31 29
358 19 35 39 | -10 | 52| 35| 35| -2 389 36 | -1 | 28 |23 26| 28 | 22 41
359 14 50 30 9 41 | -10 | 28 | 15 390 34 5 28 | 24 | 30 | 24 | 22 42
360 10 57 18 26 | 36 0 34 1 391 32 | 11 | 23 |40 | 27| 34 16 60
361 7 63 20 27 (40 | -1 | 39 1 392 35 5 24 | 32 | 18 | 42 15 52
362 -2 77 0 57 |30 | 14 | 30 | 17 393 34 (12 | 28 (29| 25| 39 14 60
363 -4 82 | -14 | 82 |28 | 26 |20 | 38 3% 39 11 | 23 (42| 18 | 50 3 78
364 -3 94 -5 75 [23| 37 | 18 | 45 395 30 (29 | 19|57 12| 70 | -16 | 123
365 9 69 | -19 | 97 |12 | 55 | 15| 54 396 34 1 26 | 22|53 |21 54| 21 53
366 -12 1 109 | 35 | 125 | 11 | 65 0 79 397 291 39 | 22|61 | 14| 71 22 56
367 36 | 35 | 27 0 37 1 -33 | 36 | -16 398 19| 66 | 11 | 8 | 11 | 83 | 25 61
368 36 | -34 | 28 0 39 | -36 | 37 | -14

I TU-T Rec. H.264 (11/2007)

229

230

Table 9-24 —Values of variablesm and n for ctxldx from 402 to 459

dices

Value of cabac_init_idc

Value of cabac _init_idc

ctxldx 0 1 2 ctxldx slices 0 1

m n m|{n | m n m n m n m n m n m n
402 -17 | 120 | -4 | 79| -5 85 -3 78 431 -2 55 -12 | 56 -9 57 | -12 | 59
403 20 | 112 | -7 | 71| -6 81 -8 74 432 0 61 -6 60 -6 63 -8 63
404 -18 | 114 | -5 | 69| -10 | 77 -9 72 433 1 64 -5 62 -4 65 -9 67
405 -11 85 9 |70 | -7 81 | -10 | 72 434 0 68 -8 66 -4 67 -6 68
406 -15] 92 -8 | 66 |-17 | 8 | -18 | 75 435 -9 92 -8 76 -7 82 | -10 | 79
407 -14 | 8 | -10 | 68 | -18 | 73 | -12 | 71 436 -14 | 106 | -5 85 -3 81 -3 78
408 26| 71 | <19 | 73| -4 74 | -11 | 63 437 -13 | 97 -6 81 -3 76 -8 74
409 -15 | 81 | -12 | 69 | -10 | 83 -5 70 438 151 90 | -10 | 77 -7 72 -9 72
410 -14 | 80 | -16 | 70 | -9 71 | -17 | 75 439 -12 | 90 -7 81 -6 78 | -10 | 72
411 0 68 | -15 | 67 | -9 67 | -14 | 72 440 -18 | 88 | -17 | 80 | -12 | 72 | -18 | 75
412 -14 |1 70 | 20 | 62 | -1 61 | -16 | 67 441 10 | 73 | -18 | 73 | -14 | 68 | -12 | 71
413 241 56 | -19 | 70 | -8 66 -8 53 442 -9 79 -4 74 -3 70 | -11 | 63
414 23| 68 | -16 | 66 | -14 | 66 | -14 | 59 443 -14 | 8 | -10 | 83 -6 76 -5 70
415 24| 50 | 22 | 65 0 59 -9 52 444 -10 | 73 -9 71 -5 66 | -17 | 75
416 11| 74 | -20 | 63 2 59 | -11 | 68 445 -10 | 70 -9 67 -5 62 | -14 | 72
417 23 | -13 9 -2 17 | -10 9 2 446 -10 | 69 -1 61 0 57 | -16 | 67
418 26 | -13 1 26 | -9 | 32 | -13 | 30 | -10 447 -5 66 -8 66 -4 61 -8 53
419 40 | -15 | 33 | -9 | 42 9 | 31 -4 448 -9 64 | -14 | 66 -9 60 | -14 | 59
420 49 | -14 | 39 | -7 | 49 -5 33 -1 449 -5 58 0 59 1 54 -9 52
421 44 3 41 21 53 0 33 7 450 2 59 2 59 2 58 | -11 | 68
422 45 6 45 3 64 3 31 12 451 21 | -10 | 21 | -13 | 17 | -10 9 2
423 44 34 49 9 68 10 | 37 | 23 452 24 | -11 | 33 | -14 | 32 | -13 | 30 | -10
424 33 54 45 | 27 | 66 | 27 | 31 38 453 28 -8 39 -7 42 -9 31 -4
425 19 82 36 | 59| 47 | 57 | 20 | 64 454 28 -1 46 -2 49 -5 33 -1
426 -3 75 -6 | 66 | -5 71 -9 71 455 29 3 51 2 53 0 33 7
427 -1 23 -7 | 35 0 24 -7 37 456 29 9 60 6 64 3 31 12
428 1 34 -7 142 | -1 36 -8 44 457 35 20 61 17 68 10 | 37 | 23
429 1 43 8 |45 | 2 42 | -11 | 49 458 29 36 55 34 | 66 | 27 | 31 38
430 0 54 -5 |48 | 2 52 | -10 | 56 459 14 67 42 | 62 | 47 | 57 | 20 | 64

ITU-T Rec. H.264 (03/2005)

Table 9-25 — Values of variablesm and n for ctxldx from 460 to 483

| and S| Value of cabac_init_idc Value of cabac init_idc
slices ! :Tg;'
ctxldx 0 1 ctxldx 0 1
m n m n m n m n m n m n m n m n
460 -17 1 123 | -7 92 0 80 11 80 472 -17 | 123 | -7 92 0 80 11 80
461 -12) 115 | -5 89 -5 89 5 76 473 -12 1 115 | -5 89 -5 89 5 76
462 -16 | 122 | -7 96 -7 94 2 84 474 -16 | 122 | -7 96 -7 94 2 84
463 -11) 115 | -13 | 108 | -4 92 5 78 475 -11 | 115 | -13 | 108 | -4 92 5 78
464 -12] 63 -3 46 0 39 -6 55 476 -12 | 63 -3 46 0 39 -6 55
465 2 68 -1 65 0 65 4 61 477 2 68 -1 65 0 65 4 61
466 -15 | 84 -1 57 | -15 | 84 | -14 | 83 478 -15 | 84 -1 57 | -15 | 84 | -14 | 83
467 -13 1 104 | -9 93 | 35 | 127 | -37 | 127 479 -13 1 104 | -9 93 | 35 | 127 | -37 | 127
468 -3 70 -3 74 2 73 -5 79 480 -3 70 -3 74 -2 73 -5 79
469 -8 93 -9 92 | -12 | 104 | -11 | 104 481 -8 93 -9 92 | -12 | 104 | -11 | 104
470 -10 | 90 -8 87 -9 91 -11 91 482 -10 | 90 -8 87 -9 91 -11 91
471 -30 | 127 | =23 | 126 | -31 | 127 | -30 | 127 483 =30 | 127 | =23 | 126 | -31 | 127 | -30 | 127
Table 9-26 — Values of variablesm and n for ctxldx from 484 to 571
| and Sl Value of cabac _init_idc Value of cabac _init_idc
slices ! g?éj;l
ctxldx 0 1 ctxldx 0 1
m n m n m n m | n m n m n m n m | n
484 -7 93 -2 85 | -13 | 103 | -4 | 86 528 -7 93 -2 85 | -13 | 103 | -4 | 86
485 -11 87 -6 78 | -13 | 91 -12 | 88 529 -11 87 -6 78 | -13 | 91 -12 | 88
486 -3 77 -1 75 -9 89 -5 | 82 530 -3 77 -1 75 -9 89 -5 | 82
487 -5 71 -7 77 | -14 | 92 30072 531 -5 71 -7 77 | -14 | 92 -3 72
488 -4 63 2 54 -8 76 -4 1 67 532 -4 63 2 54 -8 76 -4 | 67
489 -4 68 5 50 | -12 | 87 -8 | 72 533 -4 68 5 50 | -12 | 87 8172
490 -12 | 84 -3 68 | -23 | 110 | -16 | 89 534 -12 | 84 -3 68 | -23 | 110 | -16 | 89
491 -7 62 1 50 | 24 | 105 | 9 | 69 535 -7 62 1 50 | 24 | 105 | -9 | 69
492 -7 65 6 42 | -10 | 78 -1 59 536 -7 65 6 42 | -10 | 78 -1 59
493 8 61 -4 81 =20 | 112 5 66 537 8 61 -4 81 -20 | 112 5 66
494 5 56 1 63 | -17 | 99 4 57 538 5 56 1 63 | -17 | 99 4 57
495 -2 66 -4 70 | 78 | 127 | 4 | 71 539 -2 66 -4 70 [78 | 127 | 4 | 71
496 1 64 0 67 | -70 | 127 | -2 | 71 540 1 64 0 67 | =70 | 127 | -2 | 71
497 0 61 2 57 | -50 | 127 2 58 641 0 61 2 57 | -50 | 127 2 58
498 -2 78 -2 76 | 46 | 127 | -1 74 542 -2 78 -2 76 | 46 | 127 | -1 74

I TU-T Rec. H.264 (11/2007)

231

232

Table 9-26 — Values of variablesm and n for ctxldx from 484 to 571

| and S| Value of cabac _init_idc Value of cabac _init_idc
slices ! 3?3;'
ctxldx 0 1 ctxldx 0 1

m n m n m n m | n m n m n m n m | n
499 1 50 11 35 -4 66 -4 | 44 543 1 50 11 35 -4 66 -4 | 44
500 7 52 4 64 -5 78 -1 69 544 7 52 4 64 -5 78 -1 | 69
501 10 35 1 61 -4 71 0 62 545 10 35 1 61 -4 71 0 62
502 0 44 11 35 -8 72 -7 | 51 546 0 44 11 35 -8 72 -7 1 51
503 11 38 18 25 2 59 -4 1 47 547 11 38 18 25 2 59 -4 | 47
504 1 45 12 24 -1 55 -6 | 42 548 1 45 12 24 -1 55 -6 | 42
505 0 46 13 29 -7 70 -3 | 41 549 0 46 13 29 -7 70 -3 | 41
506 5 44 13 36 -6 75 -6 | 53 550 5 44 13 36 -6 75 -6 | 53
507 31 17 | -10 | 93 -8 89 8 76 551 31 17 | -10 | 93 -8 89 8 76
508 1 51 -7 73 | 34 | 119 | 9 | 78 552 1 51 -7 73 | 34 [119 | 9 | 78
509 7 50 -2 73 -3 75 | -11 | 83 553 7 50 -2 73 -3 75 | -11 | 83
510 28 19 13 46 32 20 9 52 554 28 19 13 46 32 20 9 52
511 16 33 9 49 30 22 0 67 555 16 33 9 49 30 22 0 67
512 14 62 -7 100 | -44 | 127 | -5 | 90 556 14 62 -7 | 100 | -44 | 127 | -5 | 90
513 -13 | 108 9 53 0 54 1 67 557 -13 | 108 9 53 0 54 1 67
514 -15 | 100 2 53 -5 61 | -15 | 72 558 -15 | 100 2 53 -5 61 -15] 72
515 -13 | 101 5 53 0 58 -5 | 75 559 -13 | 101 5 53 0 58 50175
516 -13 | 91 -2 61 -1 60 -8 | 80 560 -13 | 91) 61 -1 60 -8 | 80
517 -12 | 94 0 56 -3 61 | -21 | 83 561 -12 | 94 0 56 -3 61 -21 | 83
518 -10 | 88 0 56 -8 67 | 21 | 64 562 -10 | 88 0 56 -8 67 | 21 | 64
519 -16 | 84 | -13 | 63 | 25| 84 | -13 | 31 563 -16 | 84 | -13 | 63 | 25| 84 | -13 | 31
520 -10 | 86 -5 60 | -14 | 74 | -25 | 64 564 -10 | 86 -5 60 | -14 | 74 | -25 | 64
521 -7 83 -1 62 -5 65 | -29 | 94 565 -7 83 -1 62 -5 65 | -29 | 94
522 -13 87 4 57 5 52 9 75 566 -13 87 4 57 5 52 9 75
523 -19 | 94 -6 69 2 57 17 | 63 567 -19 | 94 -6 69 2 57 17 | 63
524 1 70 4 57 0 61 -8 | 74 568 1 70 4 57 0 61 -8 | 74
525 0 72 14 39 -9 69 -5 1 35 569 0 72 14 39 -9 69 -5 135
526 -5 74 4 51 -11] 70 20027 570 -5 74 4 51 | -11 | 70 20127
527 18 59 13 68 18 55 13 | 91 571 18 59 13 68 18 55 13 | 91

ITU-T Rec. H.264 (03/2005)

Table 9-27 —Values of variablesm and n for ctxldx from 572 to 659

| and S| Value of cabac _init_idc Value of cabac init_idc
) | and SI
slices slices
ctxldx 0 1 2 ctxldx 0 1 2
m n m | n m n m n m n m | n m n m n

572 241 0 11| 28 4 45 | 4 | 39 616 241 0 11| 28 4 45 | 4 | 39

573 15| 9 2 40| 10 | 28 | O | 42 617 15 9 2 [40| 10 | 28 | O | 42

574 8 | 25| 3 |44 | 10 | 31 7 | 34 618 8 | 25 | 3 | 44| 10 | 31 7 | 34

575 1318 | 0 |49 33 | -11 | 11| 29 619 1318 | 0 | 49| 33 | -11 | 11| 29

576 15| 9 0 |46 | 52 | 43| 8 | 31 620 15 9 0 [46 | 52 | 43| 8 | 31

577 13119 | 2 |44 18 15 6 37 621 13119 | 2 |44 18 15 6 37

578 10 | 37 | 2 | 51| 28 0 7| 42 622 10 | 37 | 2 | 51| 28 0 7| 42

579 12| 18 | 0 | 47| 35 | 22| 3 | 40 623 12| 18 | 0 | 47| 35 | 22| 3 | 40

580 6 [29| 4 (39| 38 |-25]| 8 | 33 624 6 [29| 4 |39 38 |-25]| 8 | 33

581 20 | 33 2 | 62| 34 0 13 | 43 625 20 | 33 2 [62| 34 0 13 | 43

582 15130 | 6 |46 | 39 | -18 | 13| 36 626 15130 | 6 | 46| 39 | -18 | 13 | 36

583 4 | 45 | 0 [54| 32 | -12 | 4 | 47 627 4 | 45 | 0 [54| 32 |-12 | 4 | 47

584 1 58 | 3 | 54102 |-94 | 3 55 628 1 58 | 3 | 54102 |-94 | 3 55

585 0 [62 | 2 |58 0 0 2 | 58 629 0 [62 | 2 |58 0 0 2 | 58

586 7 61 4 | 63| 5 |-15] 6 60 630 7 61 4 |63] 56 | -15] 6 60

587 12 | 38 | 6 | 51| 33 -4 8 | 44 631 12| 38 | 6 | 51 | 33 -4 8 | 44

588 11 | 45 6 | 57| 29 10 | 11 | 44 632 11 | 45 6 | 57| 29 10 | 11 | 44

589 15 | 39 7 153 37 50| 14 42 633 15 | 39 7 153 37 50| 14| 42

590 11|42 | 6 | 52| 51 |-29| 7 | 48 634 11|42 | 6 | 52| 51 |-29| 7 | 48

591 13|44 | 6 | 55| 39 -9 4 | 56 635 13|44 | 6 | 55| 39 -9 4 | 56

592 16 | 45 | 11 | 45| 52 | -34 | 4 | 52 636 16 | 45 | 11 | 45| 52 | -34 | 4 | 52

593 12| 41 | 14 |36 | 69 | -58 | 13 | 37 637 12 | 41 | 14 | 36 | 69 | -58 | 13 | 37

594 10 | 49 8 | 53| 67 | -63| 9 | 49 638 10 | 49 8 | 53| 67 | -63| 9 | 49

595 30| 34 | -1 | 82| 44 -5 | 19| 58 639 30| 34 | -1 | 82| 44 -5 | 19| 58

596 18 | 42 | 7 | 55| 32 7 10 | 48 640 18 | 42 | 7 | 55| 32 7 10 | 48

597 10| 55 | -3 | 78| 55 | -29 | 12| 45 641 10| 55 | -3 |78 55 | -29 | 12| 45

598 17 | 51 | 15| 46 | 32 1 0 69 642 17 | 51 | 15| 46 | 32 1 0 69

599 17 | 46 | 22 | 31 0 0 |20 33 643 17 | 46 | 22 | 31 0 0 |20 33

600 0|8 | -1 |8 | 27 | 36| 8 | 63 644 0|8 | -1 |8 | 27 | 36| 8 | 63

601 26 | -19 | 25| 7 33 | 25 | 35 | -18 645 26 | -19 | 25| 7 33 | 25 | 35 | -18

602 22| -17 | 30 | -7 | 34 | -30 | 33 | -25 646 22| -17 | 30 | -7 | 34 | -30 | 33 | -25

ITU-T Rec. H.264 (11/2007) 233

234

Table 9-27 —Values of variablesm and n for ctxldx from 572 to 659

| and S| Value of cabac _init_idc Value of cabac init_idc
s s
ctxldx 0 1 2 ctxldx 0 1 2

m| n |m]|n m n | mj|n m| n |m]|n m n|mjn
603 26 | -17 | 28 | 3 36 | 28 | 28 | -3 647 26 | -17 | 28 | 3 36 | 28 | 28 | -3
604 30 | 25| 28| 4 38 | 28 | 24| 10 648 30 | 25| 28| 4 38 | 28 | 24| 10
605 28120132 0 38 | 27 | 27 0 649 28120132 0 38 | 27 | 27 0
606 33 | -23 | 34 | -1 34 | -18 | 34 | -14 650 33 | -23 | 34 | -1 34 | -18 | 34 | -14
607 37127130 6 35 | -16 | 52 | 44 651 37127130 | 6 35 | -16 | 52 | 44
608 33 1-23130| 6 34 | -14 | 39 | 24 652 33 [-23 30| 6 34 | -14 | 39| 24
609 40 | -28 1 32| 9 32 -8 19 | 17 653 40 | -28 1 32| 9 32 -8 19 | 17
610 38 -17 |31 (19| 37 -6 | 31| 25 654 38 [-17 | 31 | 19| 37 -6 | 31| 25
611 33 | -11 | 26 | 27 | 35 0 36 | 29 655 33 | -11 | 26 | 27 | 35 0 36 | 29
612 40 | -15 |1 26 | 30 | 30 10 | 24 | 33 656 40 | -15 |1 26 | 30 | 30 10 | 24| 33
613 41| -6 | 37 | 20 | 28 18 [34| 15 657 41| -6 | 37 | 20 | 28 18 | 34| 15
614 38 1 28 | 34 | 26 25 130 | 20 658 38 1 28 | 34 | 26 25 130 | 20
615 41 | 17 | 17| 70 | 29 41 | 22 | 73 659 41 17 | 17| 70 | 29 41 | 22 | 73

ITU-T Rec. H.264 (03/2005)

Table 9-28— Values of variablesm and n for ctxldx from 660 to 717

Value of cabac_init_idc

Value of cabac_init_idc

slices slices
ctxldx 0 1 2 ctxldx 0 1 2

m n mi|n|m/|n|m/|n m| n m n|mj|n m n
660 -17 1120 -4 79| -5 |8 | -3 | 78 689 2 59 2 59 2 58 | -11 | 68
661 20112 -7 (71| -6 |81 | -8 | 74 690 23 | -13 9 -2 17 | -10 9 -2
662 181114 -5 (69| -10 77| -9 | 72 691 26 | -13 | 26 9 (32| -13] 30 | -10
663 -11 85 9 (70| -7 |81 | -10 | 72 692 40 | -15 | 33 9 42 -9 31 -4
664 -15] 92 -8 [66| -17 | 80 | -18 | 75 693 49 | -14 | 39 -7 149 | -5 33 -1
665 -14 1 89 | -10 | 68 | -18 | 73 | -12 | 71 694 44 3 41 2 53 0 33 7
666 26 71 | -19 | 73| 4 | 74| -11 | 63 695 45 6 45 3 64 3 31 12
667 -15) 81 | -12 | 69| -10 | 83 | -5 | 70 696 44 | 34 | 49 9 68 | 10 | 37 | 23
668 141 8 | -16 | 70| -9 | 71 | -17 | 75 697 33 | 54 | 45 | 27 | 66 | 27 31 38
669 0 68 | -15 67| -9 |67 | -14 | 72 698 19 | 82 | 36 | 59 |47 | 57 | 20 | 64
670 141 70 | 20 | 62 | -1 | 61 | -16 | 67 699 21 | -10 | 21 | -13 | 17 | -10 9 -2
671 241 56 | -19 |70 | -8 | 66| -8 |53 700 24 | -11 | 33 | -14 | 32 | -13 | 30 | -10
672 23] 68 | -16 | 66 | -14 | 66 | -14 | 59 701 28 | -8 39 -7 142 -9 31 -4
673 24 | 50 | 22 | 65 0 591 -9 | 52 702 28 | -1 46 2 (49| -5 33 -1
674 11 74 | 20 | 63 2 59 | -11 | 68 703 29 3 51 2 53 0 33 7
675 -14 1 106 | -5 | 8 | -3 | 81 3| 78 704 29 9 60 6 64 3 31 12
676 -13 | 97 -6 [81 | -3 |76 | -8 | 74 705 351 20 | 61 17 [68| 10 | 37 | 23
677 15190 | -10 |77 7T 72| 9 | 72 706 29 | 36 | 55 34 | 66 | 27 31 38
678 -12 1 90 -7 (81| -6 | 78 | -10 | 72 707 14| 67 | 42 | 62 | 47 | 57 | 20 | 64
679 -18 | 88 | -17 | 80 | -12 | 72 | -18 | 75 708 3175 -6 66 | -5 | 71 -9 71
680 10| 73 | <18 | 73| -14 | 68 | -12 | 71 709 -1] 23 -7 35 0 24 -7 37
681 -9 79 4 (74| -3 |70 | -11 | 63 710 1 34 -7 42 | -1 | 36 -8 44
682 -14 | 8 | -10 [83 | -6 | 76 | -5 | 70 711 1 43 -8 45 | -2 | 42 | -11 | 49
683 -10 | 73 9 (71| -5 |66 |-17 |75 712 0 54 -5 48 | -2 | 52 | -10 | 56
684 -10 | 70 9 (67| -5 62| -14| 72 713 2055 |12 | 56 | -9 | 57 | -12 | 59
685 -10 | 69 -1 | 61 0 57 | -16 | 67 714 0 61 -6 60 | -6 | 63 -8 63
686 -5 66 8 66| -4 |61 | -8 |53 715 1 64 -5 62 | 4| 65 -9 67
687 -9 64 | -14 | 66 | -9 | 60 | -14 | 59 716 0 68 -8 66 | 4 | 67 | -6 68
688 -5 58 0 59 1 541 -9 | 52 717 9192 | -8 76 | -7 | 82 | -10 | 79

I TU-T Rec. H.264 (11/2007)

235

236

Table 9-29—-Values of variablesm and n for ctxldx from 718 to 775

dices

Value of cabac_init_idc

Value of cabac_init_idc

ctxldx 0 1 2 ctxldx sices 0 1 2

m n mi|n|m/|n|m/|n m| n m n|mj|n m n
718 -17 1120 -4 79| -5 |8 | -3 | 78 747 2 59 2 59 2 58 | -11 | 68
719 20112 -7 (71| -6 |81 | -8 | 74 748 23 | -13 9 -2 17 | -10 9 -2
720 181114 -5 (69| -10 77| -9 | 72 749 26 | -13 | 26 9 (32| -13] 30 | -10
721 -11 85 9 (70| -7 |81 | -10 | 72 750 40 | -15 | 33 9 42 -9 31 -4
722 -15] 92 -8 [66| -17 | 80 | -18 | 75 751 49 | -14 | 39 -7 149 | -5 33 -1
723 -14 1 89 | -10 | 68 | -18 | 73 | -12 | 71 752 44 3 41 2 53 0 33 7
724 26 71 | -19 | 73| 4 | 74| -11 | 63 753 45 6 45 3 64 3 31 12
725 -15) 81 | -12 | 69| -10 | 83 | -5 | 70 754 44 | 34 | 49 9 68 | 10 | 37 | 23
726 141 8 | -16 | 70| -9 | 71 | -17 | 75 755 33 | 54 | 45 | 27 | 66 | 27 31 38
727 0 68 | -15 67| -9 |67 | -14 | 72 756 19 | 82 | 36 | 59 |47 | 57 | 20 | 64
728 141 70 | 20 | 62 | -1 | 61 | -16 | 67 757 21 | -10 | 21 | -13 | 17 | -10 9 -2
729 241 56 | -19 |70 | -8 | 66| -8 |53 758 24 | -11 | 33 | -14 | 32 | -13 | 30 | -10
730 23] 68 | -16 | 66 | -14 | 66 | -14 | 59 759 28 | -8 39 -7 142 -9 31 -4
731 24 | 50 | 22 | 65 0 591 -9 | 52 760 28 | -1 46 2 (49| -5 33 -1
732 11 74 | 20 | 63 2 59 | -11 | 68 761 29 3 51 2 53 0 33 7
733 -14 1 106 | -5 | 8 | -3 | 81 3| 78 762 29 9 60 6 64 3 31 12
734 -13 | 97 -6 [81 | -3 |76 | -8 | 74 763 351 20 | 61 17 [68| 10 | 37 | 23
735 15190 | -10 |77 7T 72| 9 | 72 764 29 | 36 | 55 34 | 66 | 27 31 38
736 -12 1 90 -7 (81| -6 | 78 | -10 | 72 765 14| 67 | 42 | 62 | 47 | 57 | 20 | 64
737 -18 | 88 | -17 | 80 | -12 | 72 | -18 | 75 766 3175 -6 66 | -5 | 71 -9 71
738 10| 73 | <18 | 73| -14 | 68 | -12 | 71 767 -1] 23 -7 35 0 24 -7 37
739 -9 79 4 (74| -3 |70 | -11 | 63 768 1 34 -7 42 | -1 | 36 -8 44
740 -14 | 8 | -10 [83 | -6 | 76 | -5 | 70 769 1 43 -8 45 | -2 | 42 | -11 | 49
741 -10 | 73 9 (71| -5 |66 |-17 |75 770 0 54 -5 48 | -2 | 52 | -10 | 56
742 -10 | 70 9 (67| -5 62| -14| 72 771 2055 | -12 | 56 | -9 | 57 | -12 | 59
743 -10 | 69 -1 | 6l 0 57 | -16 | 67 772 0 61 -6 60 | -6 | 63 -8 63
744 -5 66 8 66| -4 |61 | -8 |53 773 1 64 -5 62 | 4| 65 -9 67
745 -9 64 | -14 | 66 | -9 | 60 | -14 | 59 774 0 68 -8 66 | 4 | 67 | -6 68
746 -5 58 0 59 1 541 -9 | 52 775 9192 | -8 76 | -7 | 82 | -10 | 79

ITU-T Rec. H.264 (03/2005)

Table 9-30 — Values of variablesm and n for ctxldx from 776 to 863

| and S| Value of cabac_init_idc Value of cabac init_idc
slices ! 3?3;'
ctxldx 1 ctxldx 0 1
m n m n m n m n m n m n m n m n
776 -6 93 | -13 | 106 | -21 | 126 | -22 | 127 820 -6 93 | -13 | 106 | -21 | 126 | -22 | 127
7 -6 84 | -16 | 106 | -23 | 124 | -25 | 127 821 -6 84 | -16 | 106 | -23 | 124 | -25 | 127
778 -8 79 | -10 87 | -20 | 110 | -25 | 120 822 -8 79 -10 87 | -20 | 110 | -25 | 120
779 0 66 | -21 | 114 | -26 | 126 | -27 | 127 823 0 66 | -21 | 114 | -26 | 126 | -27 | 127
780 -1 71 | -18 | 110 | -25 | 124 | -19 | 114 824 -1 71 | -18 | 110 | -25 | 124 | -19 | 114
781 0 62 | -14 | 98 -17 | 105 | 23 | 117 825 0 62 -14 | 98 -17 | 105 | 23 | 117
782 -2 60 | -22 | 110 | -27 | 121 | -25 | 118 826 -2 60 | -22 | 110 | -27 | 121 | -25 | 118
783 -2 59 | =21 | 106 | -27 | 117 | -26 | 117 827 -2 59 | -21 | 106 | -27 | 117 | -26 | 117
784 -5 75 -18 | 103 | -17 | 102 | -24 | 113 828 -5 75 -18 | 103 | -17 | 102 | -24 | 113
785 -3 62 | -21 | 107 | -26 | 117 | -28 | 118 829 -3 62 | -21 | 107 | -26 | 117 | -28 | 118
786 -4 58 | -23 | 108 | -27 | 116 | -31 | 120 830 -4 58 | -23 | 108 | -27 | 116 | -31 | 120
787 -9 66 | 26 | 112 | -33 | 122 | -37 | 124 831 -9 66 | 26 | 112 | -33 | 122 | -37 | 124
788 -1 79 | -10 | 96 | -10 | 95 | -10 | 94 832 -1 79 | -10 | 96 | -10 | 95 | -10 | 94
789 0 71 | -12 | 95 | -14 | 100 | -15 | 102 833 0 71 | -12 | 95 | -14 | 100 | -15 | 102
790 3 68 -5 91 -8 95 | -10 | 99 834 3 68 -5 91 -8 95 | -10 | 99
791 10 44 -9 93 | -17 | 111 | -13 | 106 835 10 44 -9 93 | -17 | 111 | -13 | 106
792 -7 62 | 22 | 94 | -28 | 114 | -50 | 127 836 -7 62 | 22 | 94 | -28 | 114 | -50 | 127
793 15 36 -5 86 -6 89 -5 92 837 15 36 -5 86 -6 89 -5 92
794 14 40 9 67 -2 80 17 57 838 14 40 9 67 -2 80 17 57
795 16 27 -4 80 -4 82 -5 86 839 16 27 -4 80 -4 82 -5 86
796 12 29 | -10 | 85 -9 85 | -13 | 94 840 12 29 | -10 | 85 -9 85 | -13 | %4
797 1 44 -1 70 -8 81 -12 | 91 841 1 44 -1 70 -8 81 -12] 91
798 20 36 7 60 -1 72 -2 77 842 20 36 7 60 -1 72 -2 77
799 18 32 9 58 5 64 0 71 843 18 32 9 58 5 64 0 71
800 5 42 5 61 1 67 -1 73 844 5 42 5 61 1 67 -1 73
801 1 48 12 50 9 56 4 64 845 1 48 12 50 9 56 4 64
802 10 62 15 50 0 69 -7 81 846 10 62 15 50 0 69 -7 81
803 17 46 18 49 1 69 5 64 847 17 46 18 49 1 69 5 64
804 9 64 17 54 7 69 15 57 848 9 64 17 54 7 69 15 57
805 -12 1 104 | 10 41 -7 69 1 67 849 -12 | 104 | 10 41 -7 69 1 67
806 -11 97 7 46 -6 67 0 68 850 -11 97 7 46 -6 67 0 68

I TU-T Rec. H.264 (11/2007)

237

238

Table 9-30 — Values of variablesm and n for ctxldx from 776 to 863

| and S| Value of cabac_init_idc Value of cabac init_idc
slices ! 3?3;'
ctxldx ctxldx 1

m n m n m n m n m n m n m n m n
807 -16 | 96 -1 51 | -16 | 77 | -10 | 67 851 -16 | 96 -1 51 | -16 | 77 | -10 | 67
808 -7 88 7 49 -2 64 1 68 852 -7 88 7 49 -2 64 1 68
809 -8 85 8 52 2 61 0 77 853 -8 85 8 52 2 61 0 77
810 -7 85 9 41 -6 67 2 64 854 -7 85 9 41 -6 67 2 64
811 -9 85 6 47 -3 64 0 68 855 -9 85 6 47 -3 64 0 68
812 -13 | 88 2 55 2 57 -5 78 856 -13 | 88 2 55 2 57 -5 78
813 4 66 13 41 -3 65 7 55 857 4 66 13 41 -3 65 7 55
814 -3 77 10 44 -3 66 5 59 858 -3 77 10 44 -3 66 5 59
815 -3 76 6 50 0 62 2 65 859 -3 76 6 50 0 62 2 65
816 -6 76 5 53 9 51 14 54 860 -6 76 5 53 9 51 14 54
817 10 58 13 49 -1 66 15 44 861 10 58 13 49 -1 66 15 44
818 -1 76 4 63 2 71 5 60 862 -1 76 4 63 -2 71 5 60
819 -1 83 6 64 -2 75 2 70 863 -1 83 6 64 -2 75 2 70

ITU-T Rec. H.264 (03/2005)

Table 9-31 —Values of variablesm and n for ctxldx from 864 to 951

| and S| Value of cabac_init_idc Value of cabac _init_idc
slices ! :?g;'
ctxldx 0 1 2 ctxldx 0 1 2

m n m n m| n | m]| n m n m n mi| n |mj|n
864 15 6 14 11 191 -6 | 17 | -13 908 15 6 14 11 191 -6 | 17 | -13
865 6 19 11 14 | 18| -6 | 16 | -9 909 6 19 11 14 |18 -6 [16| -9
866 7 16 9 11 14 0 17 | -12 910 7 16 9 11 14 0 17 | -12
867 12 14 18 11 {26 | -12 | 27 | -21 911 12 14 18 11 | 26| -12 | 27 | -21
868 18 13 21 9 31 | -16 | 37 | -30 912 18 13 21 9 31 | -16 | 37 | -30
869 13 11 23 2 [33| 25| 41 | 40 913 13 11 23 2 |33 25| 41| 40
870 13 15 32 | -15 [33| 22 | 42 | 41 914 13 15 32 | -15 | 33| 22 | 42 | 41
871 15 16 32 | -15 | 37 | 28 | 48 | 47 915 15 16 32 | -15 | 37 | -28 | 48 | 47
872 12 23 34 | 21 [39| -30 | 39 | -32 916 12 23 34 | 21 [39] -30 | 39| -32
873 13 23 39 | 23 | 42 | 30 | 46 | -40 917 13 23 39 | 23 | 42| -30 | 46 | 40
874 15 20 42 | 33 | 47 | 42 | 52 | -51 918 15 20 42 | 33 | 47 | 42 | 52 | -51
875 14 26 41 | -31 | 45| -36 | 46 | -41 919 14 26 41 | 31 | 45| -36 | 46 | -41
876 14 44 46 | -28 | 49 | -34 | 52 | -39 920 14 44 46 | -28 | 49 | -34 | 52 | -39
877 17 40 38 | -12 | 41 | -17 | 43 | -19 921 17 40 38 | -12 | 41 | -17 | 43 | -19
878 17 47 21 29 | 32 9 32 | 11 922 17 47 21 29 | 32 9 32 | 11
879 24 17 45 | 24 | 69 | -71 | 61 | -55 923 24 17 45 | 24 | 69 | -71 | 61 | -55
880 21 21 53 | 45 | 63 | -63 | 56 | -46 924 21 21 53 | 45 | 63 | -63 | 56 | -46
881 25 22 48 | -26 | 66 | -64 | 62 | -50 925 25 22 48 | 26 | 66 | -64 | 62 | -50
882 31 27 65 | 43 | 77 | -74 | 81 | -67 926 31 27 65 | 43 | 77 | -74 | 81 | -67
883 22 29 43 | -19 | 54 | -39 | 45 | -20 927 22 29 43 | -19 | 54 | -39 | 45 | -20
884 19 35 39 | -10 [52| 35 | 35| 2 928 19 35 39 | -10 | 52] 35 | 35| -2
885 14 50 30 9 41 | -10 | 28 | 15 929 14 50 30 9 41 | -10 | 28 | 15
886 10 57 18 26 | 36 0 34 1 930 10 57 18 26 | 36 0 34 1
887 7 63 20 27 (40 | -1 | 39 1 931 7 63 20 27 (40| -1 | 39 1
888 -2 77 0 57 |30 | 14 | 30 | 17 932 -2 77 0 57 |30 | 14 | 30 | 17
889 -4 82 | -14 | 82 |28 | 26 |20 | 38 933 -4 82 | -14 | 82 | 28| 26 | 20| 38
890 -3 94 -5 75 | 23| 37 | 18 | 45 934 -3 94 -5 75 [23] 37 | 18 | 45
891 9 69 | -19 | 97 [12| 55 | 15| 54 935 9 69 | -19 | 97 |12 | 55 | 15| 54
892 -12 1 109 | -35 | 125 | 11 | 65 0 79 936 -12 1 109 | 35 | 125 | 11 | 65 0 79
893 36 | 35 | 27 0 37 1 -33 | 36 | -16 937 36 | 35 | 27 0 37 1 -33 | 36 | -16
894 36 | -34 | 28 0 39 | -36 | 37 | -14 938 36 | -34 | 28 0 39 | 36 | 37 | -14

I TU-T Rec. H.264 (11/2007)

239

240

Table 9-31 —Values of variablesm and n for ctxldx from 864 to 951

| and S| Value of cabac_init_idc Value of cabac _init_idc
slices ! 3?3;'
ctxldx 0 1 2 ctxldx 0 1 2

m n m n m| n | m]| n m n m n mi| n |mj|n
895 32 | 26 | 31 -4 (40 | 37 | 37 | -17 939 32 | 26 | 31 -4 | 40 | 37 | 37 | -17
896 37 | 30 | 27 6 38 | -30 | 32 1 940 37 | <30 | 27 6 38 | -30 | 32 1
897 44 | 32 | 34 8 46 | 33 | 34| 15 941 44 | 32 | 34 8 46 | 33 | 34| 15
898 34 | -18 | 30 10 | 42| -30 |29 | 15 942 34 | -18 | 30 10 | 42] -30 | 29| 15
899 34 | -15 | 24 22 (40| 24 | 24| 25 943 34 | -15 | 24 22 |40 | 24 | 24| 25
900 40 | -15 | 33 19 | 49| -29 | 34 | 22 944 40 | -15 | 33 19 | 49| 29 | 34| 22
901 33 -7 22 32 | 38| -12 | 31 | 16 945 33 -7 22 32 |38] -12 | 31| 16
902 35 -5 26 31 | 40 | -10 | 35 | 18 946 35 -5 26 31 |40 | -10 | 35| 18
903 33 0 21 41 (38| -3 | 31| 28 947 33 0 21 41 | 38| -3 | 31| 28
904 38 2 26 44 (46 | -5 | 33| 41 948 38 2 26 44 | 46 | -5 [33| 41
905 33 13 23 47 (31 20 | 36 | 28 949 33 13 23 47 | 31 | 20 | 36 | 28
906 23 35 16 65 | 29| 30 | 27 | 47 950 23 35 16 65 [29| 30 |27 | 47
907 13 58 14 71 | 25| 44 | 21 | 62 951 13 58 14 71 | 25| 44 | 21 | 62

ITU-T Rec. H.264 (03/2005)

Table 9-32 — Values of variablesm and n for ctxldx from 952 to 1011

| and S| Value of cabac_init_idc Value of cabac init_idc
slices ! 3?3;'
ctxldx 1 ctxldx 0 1
m n m n m n m n m n m n m n m n
952 -3 71 -6 76 | 23 | 112 | -24 | 115 982 -3 71 -6 76 | 23 | 112 | -24 | 115
953 -6 42 -2 44 | -15 | 71 | 22| 82 983 -6 42 -2 44 | -15 | 71 | 22| 82
954 -5 50 0 45 -7 61 -9 62 984 -5 50 0 45 -7 61 -9 62
955 -3 54 0 52 0 53 0 53 985 -3 54 0 52 0 53 0 53
956 -2 62 -3 64 -5 66 0 59 986 -2 62 -3 64 -5 66 0 59
957 0 58 -2 59 | -11 77 -14 | 85 987 0 58 -2 59 | -11 77 -14 | 85
958 1 63 -4 70 -9 80 | -13 | 89 988 1 63 -4 70 -9 80 | -13 | 89
959 -2 72 -4 75 -9 84 | -13 | 94 989 -2 72 -4 75 -9 84 | -13 | 94
960 -1 74 -8 82 | -10 | 87 | -11 | 92 990 -1 74 -8 82 | -10 | 87 | -11 92
961 -9 91 | -17 | 102 | -34 | 127 | -29 | 127 991 -9 91 -17 |1 102 | -34 | 127 | -29 | 127
962 -5 67 -9 77 | -21 | 101 | -21 | 100 992 -5 67 -9 77 | -21 | 101 | -21 | 100
963 -5 27 3 24 -3 39 | -14 | 57 993 -5 27 3 24 -3 39 | -14 | 57
964 -3 39 0 42 -5 53 | -12 | 67 994 -3 39 0 42 -5 53 | -12 | 67
965 -2 44 0 48 -7 61 | -11 | 71 995 -2 44 0 48 -7 61 | -11 71
966 0 46 0 55 -11 75 -10 | 77 996 0 46 0 55 -11 75 -10 77
967 -16 | 64 -6 59 | -15 | 77 | -21 85 997 -16 | 64 -6 59 | <15 | 77 | -21 85
968 -8 68 -7 71 | -17 | 91 | -16 | 88 998 -8 68 -7 71 | -17 | 91 | -16 | 88
969 -10 | 78 | -12 | 83 | -25 | 107 | -23 | 104 999 -10 | 78 | -12 | 83 | -25 | 107 | -23 | 104
970 -6 77 | -11 87 | -25 | 111 | -15 | 98 1000 -6 77 | -11 87 | <25 | 111 | -15 | 98
971 -10 | 86 | -30 | 119 | -28 | 122 | -37 | 127 1001 | -10 | 86 | -30 | 119 | -28 | 122 | -37 | 127
972 -12 92 1 58 -11 76 | -10 82 1002 -12 92 1 58 -11 76 | -10 82
973 -15 | 55 -3 29 | -10 | 44 -8 48 1003 | -15 | 55 -3 29 | -10 | 44 -8 48
974 -10 | 60 -1 36 | -10 | 52 -8 61 1004 | -10 | 60 -1 36 | -10 | 52 -8 61
975 -6 62 1 38 | -10 | 57 -8 66 1005 -6 62 1 38 | -10 | 57 -8 66
976 -4 65 2 43 -9 58 -7 70 1006 -4 65 2 43 -9 58 -7 70
977 121 73 -6 55 | -16 | 72 | -14 | 75 1007 | -12 | 73 -6 55 | -16 | 72 | -14 | 75
978 -8 76 0 58 -7 69 -10 | 79 1008 -8 76 0 58 -7 69 -10 79
979 -7 80 0 64 -4 69 -9 83 1009 -7 80 0 64 -4 69 -9 83
980 -9 88 -3 74 -5 74 | -12 | 92 1010 -9 88 -3 74 -5 74 | -12 | 92
981 -17 | 110 | -10 | 90 -9 86 | -18 | 108 1011 -17 | 110 | -10 | 90 -9 86 | -18 | 108

I TU-T Rec. H.264 (11/2007)

241

Table 9-33 — Values of variablesm and n for ctxldx from 1012 to 1023

| and S| Value of cabac_init_idc Value of cabac init_idc
. | and S
slices slices
ctxldx 0 1 2 ctxldx 0 1 2
m n m n m n m n m n m n m N m n

1012 -3 70 -3 74 -2 73 -5 79 1018 | -10 | 90 -8 87 -9 91 | -11 | 91

1013 -8 93 -9 92 | -12 | 104 | -11 | 104 | 1019 | -30 | 127 | -23 | 126 | -31 | 127 | -30 | 127

1014 | -10 | 90 -8 87 -9 91 | -11 | 91 1020 -3 70 -3 74 -2 73 -5 79

1015 | -30 | 127 | -23 | 126 | -31 | 127 | -30 | 127 | 1021 -8 93 -9 92 | -12 | 104 | -11 | 104

1016 -3 70 -3 74 -2 73 -5 79 1022 | -10 | 90 -8 87 -9 91 | -11 | 91

1017 -8 93 -9 92 | -12 | 104 | -11 | 104 | 1023 | -30 | 127 | -23 | 126 | -31 | 127 | -30 | 127

9.3.1.2 Initialisation processfor the arithmetic decoding engine

This process is invoked before decoding the first macroblock of a slice or after the decoding of any
pcm_alignment zero bit and all pcm_sample luma and pcm_sample chroma data for a macroblock of type I PCM.

Outputs of this process are the initialised decoding engine registers codIRange and codlOffset both in 16 bit register
precision.

The status of the arithmetic decoding engine is represented by the variables codlRange and codlOffset. In the
initialisation procedure of the arithmetic decoding process, codIRange is set equal to 0x01FE and codlOffset is set equal
to the value returned from read bits(9) interpreted as a 9 bit binary representation of an unsigned integer with most
significant bit written first.

The bitstream shall not contain data that results in a value of codlOffset being equal to 0xO1FE or 0x01FF.

NOTE — The description of the arithmetic decoding engine in this Recommendation | International Standard utilizes 16 bit
register precision. However, the minimum register precision for the variables codIRange and codIOffset is 9 bits.

9.3.2 Binarization process
Input to this process is a request for a syntax element.
Output of this process is the binarization of the syntax element, maxBinldxCtx, ctxIdxOffset, and bypassFlag.

Table 9-34 specifies the type of binarization process, maxBinldxCtx, and ctxIdxOffset associated with each syntax
element.

The specification of the unary (U) binarization process, the truncated unary (TU) binarization process, the concatenated
unary / k-th order Exp-Golomb (UEGK) binarization process, and the fixed-length (FL) binarization process are given in
subclauses 9.3.2.1 to 9.3.2.4, respectively. Other binarizations are specified in subclauses 9.3.2.5 t0 9.3.2.7.

Except for I slices, the binarizations for the syntax element mb_type as specified in subclause 9.3.2.5 consist of bin
strings given by a concatenation of prefix and suffix bit strings. The UEGk binarization as specified in 9.3.2.3, which is
used for the binarization of the syntax elements mvd 1X (X =0, 1) and coeff abs level minusl, and the binarization of
the coded_block pattern also consist of a concatenation of prefix and suffix bit strings. For these binarization processes,
the prefix and the suffix bit string are separately indexed using the binldx variable as specified further in subclause
9.3.3. The two sets of prefix bit strings and suffix bit strings are referred to as the binarization prefix part and the
binarization suffix part, respectively.

Associated with each binarization or binarization part of a syntax element is a specific value of the context index offset
(ctxIdxOffset) variable and a specific value of the maxBinldxCtx variable as given in Table 9-34. When two values for
each of these variables are specified for one syntax element in Table 9-34, the value in the upper row is related to the
prefix part while the value in the lower row is related to the suffix part of the binarization of the corresponding syntax
element.

The use of the DecodeBypass process and the variable bypassFlag is derived as follows.

— Ifno value is assigned to ctxIdxOffset for the corresponding binarization or binarization part in Table 9-34 labelled
as “na”, all bins of the bit strings of the corresponding binarization or of the binarization prefix/suffix part are
decoded by invoking the DecodeBypass process as specified in subclause 9.3.3.2.3. In such a case, bypassFlag is

242 ITU-T Rec. H.264 (03/2005)

set equal to 1, where bypassFlag is used to indicate that for parsing the value of the bin from the bitstream the
DecodeBypass process is applied.

— Otherwise, for each possible value of binldx up to the specified value of maxBinldxCtx given in Table 9-34, a
specific value of the variable ctxIdx is further specified in subclause 9.3.3. bypassFlag is set equal to 0.

The possible values of the context index ctxIdx are in the range 0 to 1023, inclusive. The value assigned to ctxIdxOffset
specifies the lower value of the range of ctxIdx assigned to the corresponding binarization or binarization part of a
syntax element.

ctxIdx = ctxIdxOffset =276 is assigned to the syntax element end of slice flag and the bin of mb_type, which
specifies the I PCM macroblock type as further specified in subclause 9.3.3.1. For parsing the value of the
corresponding bin from the bitstream, the arithmetic decoding process for decisions before termination
(DecodeTerminate) as specified in subclause 9.3.3.2.4 is applied.

NOTE — The bins of mb_type in I slices and the bins of the suffix for mb_type in SI slices that correspond to the same value of
binldx share the same ctxIdx. The last bin of the prefix of mb_type and the first bin of the suffix of mb_type in P, SP, and B

slices may share the same ctxIdx.

Table 9-34 — Syntax elements and associated types of binarization, maxBinl dxCtx, and ctxl dxOffset

Syntax element Type of binarization maxBinl dxCtx ctxl dxOffset
mb_type prefix and suffix prefix: 0 prefix: 0
(SI slices only) as specified in subclause 9.3.2.5 suffix: 6 suffix: 3
mb_type (I slices only) as specified in subclause 9.3.2.5 6 3
mb_skip flag _
(P, SP slices only) FL, cMax=1 0 1
. prefix and suffix prefix: 2 prefix: 14
mb_type (P, SP slices only) as specified in subclause 9.3.2.5 suffix: 5 suffix: 17
sub_mb_type . .
(P, SP slices only) as specified in subclause 9.3.2.5 2 21
mb_skip_flag FL, cMax=1 0 24
(B slices only)
. prefix and suffix prefix: 3 prefix: 27
mb_type (B slices only) as specified in subclause 9.3.2.5 suffix: 5 suffix: 32
sub_mb_type (B slices only) as specified in subclause 9.3.2.5 3 36
prefix: 4 prefix: 40
mvd_10[J[][0], mvd_1[][][0]))
prefix and suffix as given by UEG3 suffix: na suffix: na (uses DecodeBypass)
ith signedValFlag=1 =9
mvd 100 J[][1 1. mvd 1[I 1] with signedValFlag=1, uCo prefix: 4 prefix: 47
- ’ - suffix: na suffix: na (uses DecodeBypass)
ref_idx 10, ref idx 11 U 2 54
mb_qp_delta as specified in subclause 9.3.2.7 2 60
intra_chroma_pred_mode TU, cMax=3 1 64
prev_14ntra4x4 - pred_mode_flag, FL, cMax=1 0 68
prev_intra8x8 pred_mode flag
rem_llntra4x4 _pred_mode, FL, cMax=7 0 69
rem_intra8x8_pred_mode
mb_field decoding_flag FL, cMax=1 0 70
prefix and suffix prefix: 3 prefix: 73
coded_block_pattern as specified in subclause 9.3.2.6 suffix: 1 suftix: 77

I TU-T Rec. H.264 (11/2007)

243

Table 9-34 — Syntax elements and associated types of binarization, maxBinl dxCtx, and ctxl dxOffset

Syntax element Type of binarization maxBinl dxCtx ctxl dxOffset
coded_block flag FL, cMax=1 0 85
significant_coeff flag _
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 105
last_significant_coeff flag _
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 166
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 227
(blocks with ctxBlockCat < 5) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeff sign flag FL, cMax=1 0 na, (uses DecodeBypass)
end_of slice flag FL, cMax=1 0 276
significant_coeff flag _
(field coded blocks with ctxBlockCat < 5) FL, cMax=1 0 277
last_significant coeff flag _
(field coded blocks with ctxBlockCat < 5) FL, cMax=1 0 338
transform_size 8x8 flag FL, cMax=1 0 399
significant_coeff flag _
(frame coded blocks with ctxBlockCat == 5) FL, cMax=1 0 402
last_significant coeff flag _
(frame coded blocks with ctxBlockCat == 5) FL, cMax=1 0 47
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 426
(blocks with ctxBlockCat == 5) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
significant_coeff flag _
(field coded blocks with ctxBlockCat == 5) FL, cMax=1 0 436
last_significant coeff flag _
(field coded blocks with ctxBlockCat == 5) FL, cMax=1 0 431
coded_block flag _
(5 < ctxBlockCat < 9) FL, cMax=1 0 460
coded_block flag _
(9 < ctxBlockCat < 13) FL, cMax=1 0 472
coded_block flag _
(ctxBlockCat == 5,9, or 13) FL, cMax=1 0 1012
significant_coeff flag
(frame coded blocks FL, cMax=1 0 484
with 5 < ctxBlockCat < 9)
significant_coeff flag
(frame coded blocks with FL, cMax=1 0 528
9 < ctxBlockCat < 13)
last_significant_coeff flag
(frame coded blocks with FL, cMax=1 0 572
5 < ctxBlockCat < 9)
last_significant coeff flag
(frame coded blocks with FL, cMax=1 0 616
9 < ctxBlockCat < 13)
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 952
(blocks with 5 < ctxBlockCat < 9) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 982
(blocks with 9 < ctxBlockCat < 13) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)

244

ITU-T Rec. H.264 (03/2005)

Table 9-34 — Syntax elements and associated types of binarization, maxBinl dxCtx, and ctxl dxOffset

Syntax element Type of binarization maxBinl dxCtx ctxl dxOffset

significant_coeff flag

(field coded blocks with 5 < ctxBlockCat < 9) FL, eMax=1 0 776

significant_coeff flag
(field coded blocks with FL, cMax=1 0 820
9 < ctxBlockCat < 13)

last_significant coeff flag

(field coded blocks with 5 < ctxBlockCat < 9) FL, cMax=1 0 864

last_significant_coeff flag
(field coded blocks with FL, cMax=1 0 908
9 < ctxBlockCat < 13)

significant_coeff flag

(frame coded blocks with ctxBlockCat == 9) FL, cMax=1 0 660

significant_coeff flag
(frame coded blocks with FL, cMax=1 0 718
ctxBlockCat == 13)

last_significant_coeff flag

(frame coded blocks with ctxBlockCat == 9) FL, cMax=1 0 690

last_significant_coeff flag
(frame coded blocks with FL, cMax=1 0 748
ctxBlockCat == 13)

coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 708
(blocks with ctxBlockCat == 9) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
coeff abs level minusl prefix and suffix as given by UEGO prefix: 1 prefix: 766
(blocks with ctxBlockCat == 13) with signedValFlag=0, uCoff=14 suffix: na suffix: na, (uses DecodeBypass)
significant_coeff flag _
(field coded blocks with ctxBlockCat == 9) FL, cMax=1 0 675
significant_coeff flag _
(field coded blocks with ctxBlockCat == 13) FL, cMax=1 0 733
last_significant_coeff flag _
(field coded blocks with ctxBlockCat == 9) FL, cMax=1 0 699
last_significant_coeff flag FL, cMax=1 0 757

(field coded blocks with ctxBlockCat == 13)

9.3.21 Unary (U) binarization process
Input to this process is a request for a U binarization for a syntax element.
Output of this process is the U binarization of the syntax element.

The bin string of a syntax element having (unsigned integer) value synElVal is a bit string of length synElVal + 1
indexed by Binldx. The bins for binldx less than synElVal are equal to 1. The bin with binldx equal to synElVal is
equal to 0.

Table 9-35 illustrates the bin strings of the unary binarization for a syntax element.

ITU-T Rec. H.264 (11/2007) 245

Table 9-35—Bin string of the unary binarization (informative)

Value of syntax element Bin string
0 (I NxN) 0
1 1|0
2 1110
3 I1(1]1]0
4 L1110
5 (1|1 1]1]0
binldx 0|1]2|3]4]5

9.3.22 Truncated unary (TU) binarization process
Input to this process is a request for a TU binarization for a syntax element and cMax.
Output of this process is the TU binarization of the syntax element.

For syntax element (unsigned integer) values less than cMax, the U binarization process as specified in subclause
9.3.2.1 is invoked. For the syntax element value equal to cMax the bin string is a bit string of length cMax with all bins
being equal to 1.

NOTE — TU binarization is always invoked with a cMax value equal to the largest possible value of the syntax element being
decoded.

9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGK) binarization process
Input to this process is a request for a UEGk binarization for a syntax element, signedValFlag and uCoff.
Output of this process is the UEGk binarization of the syntax element.

A UEGKk bin string is a concatenation of a prefix bit string and a suffix bit string. The prefix of the binarization is
specified by invoking the TU binarization process for the prefix part Min(uCoff, Abs(synEIVal)) of a syntax element
value synElVal as specified in subclause 9.3.2.2 with cMax = uCoff, where uCoff > 0.

The UEGK bin string is derived as follows.

- If one of the following is true, the bin string of a syntax element having value synElVal consists only of a prefix bit
string,

- signedValFlag is equal to 0 and the prefix bit string is not equal to the bit string of length uCoff with all
bits equal to 1.

- signedValFlag is equal to 1 and the prefix bit string is equal to the bit string that consists of a single bit
with value equal to 0.

- Otherwise, the bin string of the UEGk suffix part of a syntax element value synElVal is specified by a process
equivalent to the following pseudo-code:

if(Abs(synElVal) >= uCoff) {
sufS = Abs(synElVal) — uCoff
stopLoop =0
do {
if(sufS >= (1<<k)){
put(1)
sufS = sufS — (1<<k)
k++
} else {
put(0)
while(k——)
put((sufS>>k) & 0x01)
stopLoop =1

246 ITU-T Rec. H.264 (03/2005)

§
} while(!stopLoop)

if(signedValFlag && synElVal != 0)
if(synElVal > 0)

put(0)
else

put(1)

NOTE — The specification for the k-th order Exp-Golomb (EGk) code uses 1’s and 0’s in reverse meaning for the unary part of
the Exp-Golomb code of 0-th order as specified in subclause 9.1.

9.3.24 Fixed-length (FL) binarization process
Input to this process is a request for a FL binarization for a syntax element and cMax.
Output of this process is the FL binarization of the syntax element.

FL binarization is constructed by using a fixedLength-bit unsigned integer bin string of the syntax element value, where
fixedLength = Ceil(Log2(cMax + 1)). The indexing of bins for the FL binarization is such that the binldx = 0 relates
to the least significant bit with increasing values of binldx towards the most significant bit.

9.3.25 Binarization processfor macroblock type and sub-macroblock type

Input to this process is a request for a binarization for syntax elements mb_type or sub_mb_type.
Output of this process is the binarization of the syntax element.

The binarization scheme for decoding of macroblock type in I slices is specified in Table 9-36.

For macroblock types in SI slices, the binarization consists of bin strings specified as a concatenation of a prefix and a
suffix bit string as follows.

The prefix bit string consists of a single bit, which is specified by by = ((mb_type == SI)? 0:1). For the syntax
element value for which by is equal to 0, the bin string only consists of the prefix bit string. For the syntax element value
for which by is equal to 1, the binarization is given by concatenating the prefix by and the suffix bit string as specified in
Table 9-36 for macroblock type in I slices indexed by subtracting 1 from the value of mb_type in SI slices.

ITU-T Rec. H.264 (11/2007) 247

Table 9-36 — Binarization for macroblock typesin | sices

Value (name) of mb_type | Bin string

0 (I 4x4) 0

1(1_16x16_0_0_0) 1 0 0 0 0 0
2(1_16x16_1 0 0) 1 0 0 0 0 1
3(1_16x16 2 0 0) 1 0 0 0 1 0
4(1_16x16_3_0_0) 1 0 0 0 1 1
5(_16x16_0_1_0) 1 0 0 1 0 0 0
6 (1 _16x16_1 1 0) 1 0 0 1 0 0 1
7 (1 16x16 2 1 0) 1 0 0 1 0 1 0
8 (1_16x16 3 1 0) 1 0 0 1 0 1 1
9 (1_16x16_0 2 0) 1 0 0 1 1 0 0
10 (1_16x16_1 2 0) 1 0 0 1 1 0 1
11 (1_16x16_2 2 0) 1 0 0 1 1 1 0
12 (1_16x16_3 2 0) 1 0 0 1 1 1 1
13 (1_16x16_0 0 1) 1 0 1 0 0 0

14 (1_16x16_1 0 1) 1 0 1 0 0 1

15 (1_16x16 2 0 1) 1 0 1 0 1 0

16 (1_16x16 3 0 1) 1 0 1 0 1 1

17 (1L 16x16 0 1 1) 1 0 1 1 0 0 0
18 (1_16x16_1 1 1) 1 0 1 1 0 0 1
19 (1_16x16 2 1 1) 1 0 1 1 0 1 0
20 (1_16x16 3 1 1) 1 0 1 1 0 1 1
21 (1_16x16 0 2 1) 1 0 1 1 1 0 0
22 (1 16x16_1 2 1) 1 0 1 1 1 0 1
23 (1_16x16 2 2 1) 1 0 1 1 1 1 0
24 (1 16x16 3 2 1) 1 0 1 1 1 1 1
25 (L PCM) 1 1

binldx 0 1 2 3 4 5 6

The binarization schemes for P macroblock types in P and SP slices and for B macroblocks in B slices are specified in
Table 9-37.

The bin string for I macroblock types in P and SP slices corresponding to mb_type values 5 to 30 consists of a
concatenation of a prefix, which consists of a single bit with value equal to 1 as specified in Table 9-37 and a suffix as
specified in Table 9-36, indexed by subtracting 5 from the value of mb_type.

mb_type equal to 4 (P_8x8ref0) is not allowed.

For I macroblock types in B slices (mb_type values 23 to 48) the binarization consists of bin strings specified as a
concatenation of a prefix bit string as specified in Table 9-37 and suffix bit strings as specified in Table 9-36, indexed
by subtracting 23 from the value of mb_type.

248 ITU-T Rec. H.264 (03/2005)

Table 9-37 —Binarization for macroblock typesin P, SP, and B dlices

Slicetype | Value (name) of mb_type | Bin string
0 (P_LO_16x16) 0 0
1 (P_LO_LO_16x8) 0 1
2 (P_LO_LO_8x16) 0 1

P, SP slice
3 (P_8x8) 0 0
4 (P_8x8ref0) na
5 to 30 (Intra, prefix only) 1
0 (B_Direct_16x16) 0
1 (B_LO_16x16) 1 0
2 (B_L1_16x16) 1 0
3 (B_Bi_16x16) 1 1 0 0
4 (B_LO_LO_16x8) 1 1 0 1
5(B_L0_LO 8x16) 1 1 1 0
6(B_L1 L1 16x8) 1 1 1 1
7(B_L1 L1 8x16) 1 1 0 0
8 (B_LO_L1_16x8) 1 1 0 1
9(B_L0O L1 8x16) 1 1 1 0
10(B_L1_LO_16x8) 1 1 1 1
11 (B_L1 L0 8x16) 1 1 1 0

B slice
12 (B_LO_Bi_16x8) 1 1 0 0 0
13 (B_L0_Bi_8x16) 1 1 0 0 1
14 (B_L1_Bi_16x8) 1 1 0 1 0
15(B_L1_Bi_8x16) 1 1 0 1 1
16 (B_Bi_L0_16x8) 1 1 1 0 0
17 (B_Bi_L0_8x16) 1 1 1 0 1
18 (B_Bi_L1_16x8) 1 1 1 1 0
19 (B_Bi_L1_8x16) 1 1 1 1 1
20 (B_Bi_Bi_16x8) 1 1 0 0 0
21 (B_Bi_Bi_8x16) 1 1 0 0 1
22 (B_8x8) 1 1 1 1
23 to 48 (Intra, prefix only) | 1 1 0 1

binldx 0 1 4 5 6

For P, SP, and B slices the specification of the binarization for sub_mb_type is given in Table 9-38.

I TU-T Rec. H.264 (11/2007)

249

Table 9-38 —Binarization for sub-macrablock typesin P, SP, and B slices

Slicetype | Value (name) of sub_mb_type | Bin string
0 (P_LO_8x8) 1
1 (P_LO_8x4) 0 0

P, SP slice
2 (P_LO_4x8) 0 1 1
3 (P_LO_4x4) 0 1 0
0 (B_Direct 8x8) 0
1 (B_LO_8x8) 1 0 0
2(B_L1_8x8) 1 0 1
3 (B_Bi_8x8) 1 1 0 0 0
4 (B_LO_8x4) 1 1 0 0 1
5(B_L0_4x8) 1 1 0 1 0

B slice 6 (B_L1_8x4) 1 1 0 1 1
7 (B_L1_4x8) 1 1 1 0 0 0
8 (B_Bi_8x4) 1 1 1 0 0 1
9 (B_Bi_4x8) 1 1 1 0 1 0
10 (B_LO_4x4) 1 1 1 0 1 1
11 (B_L1_4x4) 1 1 1 1 0
12 (B_Bi_4x4) 1 1 1 1 1

binldx 0 1 2 3 4 5

9.3.26 Binarization processfor coded block pattern
Input to this process is a request for a binarization for the syntax element coded block pattern.
Output of this process is the binarization of the syntax element.

The binarization of coded block pattern consists of a prefix part and (when present) a suffix part. The prefix part of the
binarization is given by the FL binarization of CodedBlockPatternL.uma with cMax = 15. When ChromaArrayType is
not equal to 0 or 3, the suffix part is present and consists of the TU binarization of CodedBlockPatternChroma with
cMax =2. The relationship between the value of the syntax element coded block pattern and the values of
CodedBlockPatternLuma and CodedBlockPatternChroma is given as specified in subclause 7.4.5.

9.3.2.7 Binarization processfor mb_qp_delta
Input to this process is a request for a binarization for the syntax element mb_qp_delta.
Output of this process is the binarization of the syntax element.

The bin string of mb_qp_delta is derived by the U binarization of the mapped value of the syntax element mb_qp_delta,
where the assignment rule between the signed value of mb qp delta and its mapped value is given as specified in
Table 9-3.

9.3.3 Decoding process flow

Input to this process is a binarization of the requested syntax element, maxBinldxCtx, bypassFlag and ctxIdxOffset as
specified in subclause 9.3.2.

Output of this process is the value of the syntax element.

This process specifies how each bit of a bit string is parsed for each syntax element.

250 ITU-T Rec. H.264 (03/2005)

After parsing each bit, the resulting bit string is compared to all bin strings of the binarization of the syntax element and
the following applies.

— Ifthe bit string is equal to one of the bin strings, the corresponding value of the syntax element is the output.
— Otherwise (the bit string is not equal to one of the bin strings), the next bit is parsed.
While parsing each bin, the variable binldx is incremented by 1 starting with binldx being set equal to 0 for the first bin.

When the binarization of the corresponding syntax element consists of a prefix and a suffix binarization part,, the
variable binldx is set equal to O for the first bin of each part of the bin string (prefix part or suffix part). In this case,
after parsing the prefix bit string, the parsing process of the suffix bit string related to the binarizations specified in
subclauses 9.3.2.3 and 9.3.2.5 is invoked depending on the resulting prefix bit string as specified in subclauses 9.3.2.3
and 9.3.2.5. Note that for the binarization of the syntax element coded block pattern, the suffix bit string is present
regardless of the prefix bit string of length 4 as specified in subclause 9.3.2.6.

Depending on the variable bypassFlag, the following applies.

— If bypassFlag is equal to 1, the bypass decoding process as specified in subclause 9.3.3.2.3 is applied for parsing
the value of the bins from the bitstream.

— Otherwise (bypassFlag is equal to 0), the parsing of each bin is specified by the following two ordered steps:
1. Given binldx, maxBinldxCtx and ctxIdxOffset, ctxIdx is derived as specified in subclause 9.3.3.1.

2. Given ctxIdx, the value of the bin from the bitstream as specified in subclause 9.3.3.2 is decoded.

9.3.3.1 Derivation processfor ctxldx
Inputs to this process are binldx, maxBinldxCtx and ctxIdxOffset.
Output of this process is ctxIdx.

Table 9-39 shows the assignment of ctxIdx increments (ctxIdxInc) to binldx for all ctxIdxOffset values except those
related to the syntax elements coded block flag, significant coeff flag, last significant coeff flag, and
coeff _abs level minusl.

The ctxldx to be used with a specific binldx is specified by first determining the ctxIdxOffset associated with the given
bin string or part thereof. The ctxIdx is determined as follows.

— If the ctxIdxOffset is listed in Table 9-39, the ctxIdx for a binldx is the sum of ctxIdxOffset and ctxIdxInc, which
is found in Table 9-39. When more than one value is listed in Table 9-39 for a binldx, the assignment process for
ctxIdxInc for that binldx is further specified in the subclauses given in parenthesis of the corresponding table entry.

— Otherwise (ctxIdxOffset is not listed in Table 9-39), the ctxIdx is specified to be the sum of the following terms:
ctxIdxOffset and ctxIdxBlockCatOffset(ctxBlockCat) as specified in Table 9-40 and ctxIdxInc(ctxBlockCat).
Subclause 9.3.3.1.3 specifies which ctxBlockCat is used. Subclause 9.3.3.1.1.9 specifies the assignment of
ctxIdxInc(ctxBlockCat) for coded block flag, and subclause 9.3.3.1.3 specifies the assignment of
ctxIdxInc(ctxBlockCat) for significant coeff flag, last significant coeff flag, and coeff abs level minusl.

All bins with binldx greater than maxBinldxCtx are parsed using the value of ctxIdx being assigned to binldx equal to
maxBinldxCtx.

All entries in Table 9-39 labelled with “na” correspond to values of binldx that do not occur for the corresponding
ctxIdxOffset.

ctxIldx =276 is assigned to the binldx of mb type indicating the I PCM mode. For parsing the value of the
corresponding bins from the bitstream, the arithmetic decoding process for decisions before termination as specified in
subclause 9.3.3.2.4 is applied.

ITU-T Rec. H.264 (11/2007) 251

Table 9-39 — Assignment of ctxldxIncto binldx for all ctxldxOffset values except thoserelated to the syntax
elements coded_block_flag, significant_coeff_flag, last_significant_coeff flag, and coeff_abs level_minusl

binldx
ctxl dxOffset
0 1 2 3 4 5 >=6
0 0,1,2 na na na na na na
(subclause 9.3.3.1.1.3)
012 5,6 6,7
3 Ta ctxldx=276 3 4 (subclause | (subclause 7
(subclause 9.3.3.1.1.3) 933.12) | 9.33.1.2)
11 0,1,2 na na na na na na
(subclause 9.3.3.1.1.1)
2,3
14 0 1 (subclause na na na na
9.3.3.1.2)
2,3
17 0 ctxIdx=276 1 2 (subclause 3 3
9.3.3.1.2)
21 0 1 2 na na na na
24 0,1,2 na na na na na na
(subclause 9.3.3.1.1.1)
27 0,1,2 3 (subtlsause 5 5 5 5
(subclause 9.3.3.1.1.3) 933.1.2)
2,3
32 0 ctxldx=276 1 2 (subclause 3 3
9.3.3.1.2)
2,3
36 0 1 (subclause 3 3 3 na
9.3.3.1.2)
0,1,2
40 (subclause 9.3.3.1.1.7) 3 4 3 6 6 6
0,1,2
47 (subclause 9.3.3.1.1.7) 3 4 3 6 6 6
0,1,2,3
>4 (subclause 9.3.3.1.1.6) 4 3 3 3 3 >
0,1
60 (subclause 9.3.3.1.1.5) 2 3 3 3 3 3
0,1,2
64 (subclause 9.3.3.1.1.8) 3 3 na na na na
68 0 na na na na na na
69 0 0 0 na na na na
70 0,1,2 na na na na na na
(subclause 9.3.3.1.1.2)
0,1,2,3 0,1,2,3 0,1,2,3
0,1,2,3
73 (subclause 9.3.3.1.1.4) (subclause | (subclause | (subclause na na na
""" 9.3.3.1.14) | 93.3.1.14) | 93.3.1.14)
77 0,1,2,3 (sﬁi}sc’IGa’Zse na na na na na
(subclause 9.3.3.1.1.4) 93.3.1.1.4)
276 0 na na na na na na
0,1,2
399 (subclause 9.3.3.1.1.10) na na na na na na

252 ITU-T Rec. H.264 (03/2005)

Table 9-40 shows the values of ctxldxBlockCatOffset depending on ctxBlockCat for the syntax elements
coded block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl. The specification of
ctxBlockCat is given in Table 9-42.

Table 9-40 — Assignment of ctxldxBlockCatOffset to ctxBlockCat for syntax elements coded_block_flag,
significant_coeff flag, last_significant_coeff flag, and coeff_abs level _minusl

ctxBlockCat (as specified in Table 9-42)

Syntax element

0|1 2 3 4 5 6 7 8 9 10 11 12 13
coded_block_flag 0|4 8 12 16 0 0 4 8 4 0 4 8 8
significant_coeff flag 0|15 |29 44 47 0 0 15 29 0 0 15 29 0
last_significant_coeff flag | 0 | 15 | 29 44 47 0 0 15 29 0 0 15 29 0
coeff_abs_level minusl 0|10 |20 30 39 0 0 10 20 0 0 10 20 0

9.3.3.1.1 Assignment process of ctxldxlnc using neighbouring syntax elements

Subclause 9.3.3.1.1.1 specifies the derivation process of ctxIdxInc for the syntax element mb_skip flag.

Subclause 9.3.3.1.1.2 specifies the derivation process of ctxIdxInc for the syntax element mb_field decoding_flag.
Subclause 9.3.3.1.1.3 specifies the derivation process of ctxIdxInc for the syntax element mb_type.

Subclause 9.3.3.1.1.4 specifies the derivation process of ctxIdxInc for the syntax element coded block pattern.
Subclause 9.3.3.1.1.5 specifies the derivation process of ctxIdxInc for the syntax element mb_qp_delta.

Subclause 9.3.3.1.1.6 specifies the derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx I1.
Subclause 9.3.3.1.1.7 specifies the derivation process of ctxldxInc for the syntax elements mvd 10 and mvd 11.
Subclause 9.3.3.1.1.8 specifies the derivation process of ctxIdxInc for the syntax element intra_chroma pred mode.
Subclause 9.3.3.1.1.9 specifies the derivation process of ctxIdxInc for the syntax element coded block flag.

Subclause 9.3.3.1.1.10 specifies the derivation process of ctxIdxInc for the syntax element transform_size 8x8 flag.

9.3.3.1.1.1 Derivation process of ctxldxIncfor the syntax element mb_skip_flag
Output of this process is ctxIdxInc.

When MbaffFrameFlag is equal to 1 and mb field decoding flag has not been decoded (yet) for the current
macroblock pair with top macroblock address 2 * (CurrMbAddr/2), the inference rule for the syntax element
mb_field decoding flag as specified in subclause 7.4.4 is applied.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

— If mbAddrN is not available or mb_skip flag for the macroblock mbAddrN is equal to 1, condTermFlagN is set
equal to 0.

— Otherwise (mbAddrN is available and mb_skip flag for the macroblock mbAddrN is equal to 0), condTermFlagN is
set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB 9-1)

9.3.3.1.1.2 Derivation processof ctxldxIncfor the syntax element mb_field_decoding_flag

Output of this process is ctxIdxInc.

ITU-T Rec. H.264 (11/2007) 253

The derivation process for neighbouring macroblock addresses and their availability in MBAFF frames as specified in
subclause 6.4.9 is invoked and the output is assigned to mbAddrA and mbAddrB.

When both macroblocks mbAddrN and mbAddrN + 1 have mb_type equal to P_Skip or B_Skip, the inference rule for
the syntax element mb_field decoding_flag as specified in subclause 7.4.4 is applied for the macroblock mbAddrN.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.
— If any of the following conditions is true, condTermFlagN is set equal to 0,

— mbAddrN is not available,

— the macroblock mbAddrN is a frame macroblock.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB 9-2)

9.3.3.1.1.3 Derivation process of ctxldxInc for the syntax element mb_type
Input to this process is ctxIdxOffset.
Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.
— If any of the following conditions is true, condTermFlagN is set equal to 0,
mbAddrN is not available,

— ctxIdxOffset is equal to 0 and mb_type for the macroblock mbAddrN is equal to SI,
— ctxldxOffset is equal to 3 and mb_type for the macroblock mbAddrN is equal to I NxN,

— ctxIdxOffset is equal to27 and mb_type for the macroblock mbAddrN is equal to P_Skip, B_Skip, or
B_Direct_16x16.

— Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + condTermFlagB (9-3)

9.3.3.1.1.4 Derivation process of ctxldxIncfor the syntax element coded_block_pattern
Inputs to this process are ctxIdxOffset and binldx.

Output of this process is ctxIdxInc.

Depending on the value of the variable ctxIdxOffset, the following applies.

— If etxIdxOffset is equal to 73, the following applies,

— The derivation process for neighbouring 8x8 luma blocks specified in subclause 6.4.10.2 is invoked with
luma8x8BIkIdx = binldx as input and the output is assigned to mbAddrA, mbAddrB, luma8x8BlkIdxA, and
luma8x8BlkIdxB.

— Let the variable condTermFlagN (with N being either A or B) be derived as follows.
— If any of the following conditions are true, condTermFlagN is set equal to 0,
— mbAddrN is not available,
— mb_type for the macroblock mbAddrN is equal to I PCM,

— the macroblock mbAddrN is not the current macroblock CurrMbAddr and the macroblock mbAddrN does
not have mb_type equal to P_Skip or B_Skip, and

254 ITU-T Rec. H.264 (03/2005)

((CodedBlockPatternLuma >> luma8x8BIkldxN) & 1) is not equal toO for the wvalue of
CodedBlockPatternLuma for the macroblock mbAddrN.

— the macroblock mbAddrN is the current macroblock CurrMbAddr and the prior decoded bin value by of
coded block pattern with k = luma8x8BIkIdxN is not equal to 0.

— Otherwise, condTermFlagN is set equal to 1.

— The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + 2 * condTermFlagB 9-4)

— Otherwise (ctxIdxOffset is equal to 77), the following applies.

— The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

— Let the variable condTermFlagN (with N being either A or B) be derived as follows.

— If mbAddrN is available and mb_type for the macroblock mbAddrN is equal to I PCM, condTermFlagN is
set equal to 1,

— Otherwise, if any of the following conditions is true, condTermFlagN is set equal to 0,

— mbAddrN is not available or the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

— binldx is equal to 0 and CodedBlockPatternChroma for the macroblock mbAddrN is equal to O,

— binldx is equal to 1 and CodedBlockPatternChroma for the macroblock mbAddrN is not equal to 2.
— Otherwise, condTermFlagN is set equal to 1.

— The variable ctxIdxInc is derived as

ctxldxInc = condTermFlagA + 2 * condTermFlagB + ((binldx == 1)?74:0) (9-5)

NOTE —When a macroblock uses an Intra 16x16 prediction mode, the values of CodedBlockPatternLuma and
CodedBlockPatternChroma for the macroblock are derived from mb_type as specified in Table 7-11.

9.3.3.1.1.5 Derivation processof ctxldxIncfor the syntax element mb_qp_delta
Output of this process is ctxIdxInc.

Let prevMbAddr be the macroblock address of the macroblock that precedes the current macroblock in decoding order.
When the current macroblock is the first macroblock of a slice, prevMbAddr is marked as not available.

Let the variable ctxIdxInc be derived as follows.

— If any of the following conditions is true, ctxIdxInc is set equal to 0,
— prevMbAddr is not available or the macroblock prevMbAddr has mb_type equal to P_Skip or B_Skip,
— mb_type of the macroblock prevMbAddr is equal to I PCM,

— The macroblock prevMbAddr is not coded in Intra_16x16 prediction mode and both CodedBlockPatternL.uma
and CodedBlockPatternChroma for the macroblock prevMbAddr are equal to 0,

— mb_qgp_delta for the macroblock prevMbAddr is equal to 0,

— Otherwise, ctxIdxInc is set equal to 1.

9.3.3.1.1.6 Derivation processof ctxldxIncfor the syntax elementsref_idx 10and ref_idx_|1
Input to this process is mbPartldx.

Output of this process is ctxIdxInc.

The interpretation of ref idx 1X and Pred LX within this subclause is specified as follows.

— If this process is invoked for the derivation of ref idx 10, ref idx 1X is interpreted as ref idx 10 and Pred LX is
interpreted as Pred LO.

— Otherwise (this process is invoked for the derivation of ref idx 11), ref idx 1X is interpreted as ref idx 11 and
Pred LX is interpreted as Pred L1.

ITU-T Rec. H.264 (11/2007) 255

The derivation process for neighbouring partitions specified in subclause 6.4.10.7 is invoked with mbPartldx,
currSubMbType, and subMbPartldx =0 as input and the output is assigned to mbAddrA\mbPartldxA and
mbAddrB\mbPartIdxB.

With ref idx 1X[mbPartldxN] (with N being either A or B) specifying the syntax element for the macroblock
mbAddrN, let the variable refldxZeroFlagN be derived as follows.

— If MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the macroblock mbAddrN is a
field macroblock

refldxZeroFlagN = ((ref idx_IX[mbPartldxN [>1)?0:1) (9-6)
— Otherwise,
refldxZeroFlagN = ((ref idx IX[mbPartldxN]>0)?0:1) 9-7)

Let the variable predModeEqualFlagN be specified as follows.
— If the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies.

— If SubMbPredMode(sub_mb_type[mbPartldxN]) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where sub_mb_type specifies the syntax element for the macroblock
mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.
— Otherwise, the following applies.

— If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.
Let the variable condTermFlagN (with N being either A or B) be derived as follows.
— If any of the following conditions is true, condTermFlagN is set equal to 0,

— mbAddrN is not available,

the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

— the macroblock mbAddrN is coded in Intra prediction mode,

predModeEqualFlagN is equal to 0,
— refldxZeroFlagN is equal to 1.
— Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + 2 * condTermFlagB (9-8)

9.3.3.1.1.7 Derivation process of ctxldxInc for the syntax elementsmvd_I0 and mvd_11
Inputs to this process are mbPartldx, subMbPartldx, and ctxIdxOffset.

Output of this process is ctxIdxInc.

The interpretation of mvd 1X and Pred LX within this subclause is specified as follows.

— Ifthis process is invoked for the derivation of mvd_10, mvd 1X is interpreted as mvd 10 and Pred LX is
interpreted as Pred LO.

— Otherwise (this process is invoked for the derivation of mvd _11), mvd 1X is interpreted as mvd_11 and
Pred LX is interpreted as Pred L1.

Let currSubMbType be set equal to sub_mb_type[mbPartldx].

256 ITU-T Rec. H.264 (03/2005)

The derivation process for neighbouring partitions specified in subclause 6.4.10.7 is invoked with mbPartldx,
currSubMbType, and subMbPartldx as input and the output is assigned to mbAddrA\mbPartldxA\subMbPartldxA and
mbAddrB\mbPartldxB\subMbPartIdxB.

Let the variable compldx be derived as follows.

— If ctxIdxOffset is equal to 40, compldx is set equal to O.

— Otherwise (ctxIdxOffset is equal to 47), compldx is set equal to 1.

Let the variable predModeEqualFlagN be specified as follows.

— If the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies.

— If SubMbPredMode(sub_mb_type[mbPartldxN]) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where sub_mb_type specifies the syntax element for the macroblock
mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.
— Otherwise, the following applies.

— If MbPartPredMode(mb_type, mbPartldxN) is not equal to Pred LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

— Otherwise, predModeEqualFlagN is set equal to 1.

Let the variable absMvdCompN (with N being either A or B) be derived as follows.
— If any of the following conditions is true, absMvdCompN is set equal to 0.

— mbAddrN is not available,

— the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

— the macroblock mbAddrN is coded in an Intra prediction mode,

— predModeEqualFlagN is equal to 0.
— Otherwise, the following applies.

— If compldx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the
macroblock mbAddrN is a field macroblock

absMvdCompN = Abs(mvd_IX[mbPartldxN][subMbPartIdxN][compldx]) * 2 (9-9)

— Otherwise, if compldx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a field macroblock,
and the macroblock mbAddrN is a frame macroblock

absMvdCompN = Abs(mvd_1X[mbPartldxN][subMbPartldxN][compldx]) /2 (9-10)
— Otherwise,
absMvdCompN = Abs(mvd_1X[mbPartldxN][subMbPartIdxN][compldx]) (9-11)

The variable ctxIdxInc is derived as follows.

— If (absMvdCompA + absMvdCompB) is less than 3, ctxIdxInc is set equal to 0.

— Otherwise, if (absMvdCompA + absMvdCompB) is greater than 32, ctxIdxInc is set equal to 2.

— Otherwise ((absMvdCompA + absMvdCompB) is in the range of 3 to 32, inclusive), ctxIdxInc is set equal to 1.
9.3.3.1.1.8 Derivation process of ctxldxInc for the syntax element intra_chroma_pred_mode

Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

ITU-T Rec. H.264 (11/2007) 257

Let the variable condTermFlagN (with N being replaced by either A or B) be derived as follows.

If any of the following conditions is true, condTermFlagN is set equal to 0.

mbAddrN is not available,
The macroblock mbAddrN is coded in Inter prediction mode,
mb_type for the macroblock mbAddrN is equal to I PCM,

intra_chroma pred mode for the macroblock mbAddrN is equal to O.

Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (9-12)

9.3.3.1.1.9 Derivation processof ctxldxInc for the syntax element coded_block flag

Input to this process is ctxBlockCat and additional input is specified as follows.

If ctxBlockCat is equal to 0, 6, or 10, no additional input.

Otherwise, if ctxBlockCat is equal to 1 or 2, luma4x4BIkIdx.

Otherwise, if ctxBlockCat is equal to 3, the chroma component index iCbCr.

Otherwise, if ctxBlockCat is equal to 4, chroma4x4BlklIdx and the chroma component index iCbCr.

Otherwise, if ctxBlockCat is equal to 5, luma8x8BIkIdx.
Otherwise, if ctxBlockCat is equal to 7 or 8, cb4x4BlkIdx.
Otherwise, if ctxBlockCat is equal to 9, cb8x8BlkIdx.
Otherwise, if ctxBlockCat is equal to 11 or 12, cr4x4BlkIdx.
Otherwise (ctxBlockCat is equal to 13), cr8x8BIlkIdx.

Output of this process is ctxIdxInc(ctxBlockCat).

Let the variable transBlockN (with N being either A or B) be derived as follows.

If ctxBlockCat is equal to 0, 6, or 10, the following applies.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

The variable transBlockN is derived as follows.

If mbAddrN is available and the macroblock mbAddrN is coded in Intra_16x16 prediction mode, the following
applies.

— If etxBlockCat is equal to 0, the luma DC block of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, if ctxBlockCat is equal to 6, the Cb DC block of macroblock mbAddrN is assigned to
transBlockN.

— Otherwise (ctxBlockCat is equal to 10), the Cr DC block of macroblock mbAddrN is assigned to
transBlockN.

Otherwise, transBlockN is marked as not available.

Otherwise, if ctxBlockCat is equal to 1 or 2, the following applies.

258

The derivation process for neighbouring 4x4 luma blocks specified in subclause 6.4.10.4 is invoked with
luma4x4BIlkldx as input and the output is assigned to mbAddrN, luma4x4BlkIdxN (with N being either A or B).

The variable transBlockN is derived as follows.

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPatternLuma >> (luma4x4BlkIdxN >>2)) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size 8x8 flag is equal to 0 for the macroblock mbAddrN, the 4x4 luma block with
index luma4x4BIkIdxN of macroblock mbAddrN is assigned to transBlockN.

ITU-T Rec. H.264 (03/2005)

— Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip or
B_Skip, ((CodedBlockPatternLuma >> (luma4x4BIkIdxN>>2)) & 1) is not equal to0 for the
macroblock mbAddrN, and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8
luma block with index (luma4x4BlkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

— Otherwise, if ctxBlockCat is equal to 3, the following applies.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrN (with N being either A or B).

The variable transBlockN is derived as follows.

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, and CodedBlockPatternChroma is not equal to O for the macroblock mbAddrN, the chroma DC
block of chroma component iCbCr of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

— Otherwise, if ctxBlockCat is equal to 4, the following applies.

The derivation process for neighbouring 4x4 chroma blocks specified in subclause 6.4.10.5 is invoked with
chroma4x4BIlkldx as input and the output is assigned to mbAddrN, chroma4x4BIlkIdxN (with N being either A
or B).

The variable transBlockN is derived as follows.

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, and CodedBlockPatternChroma is equal to 2 for the macroblock mbAddrN, the 4x4 chroma block
with chroma4x4BlkIdxN of the chroma component iCbCr of macroblock mbAddrN is assigned to
transBlockN.

— Otherwise, transBlockN is marked as not available.

— Otherwise, if ctxBlockCat is equal to 5, the following applies.

The derivation process for neighbouring 8x8 luma blocks specified in subclause 6.4.10.2 is invoked with
luma8x8BlkIdx as input and the output is assigned to mbAddrN, luma8x8BlkIdxN (with N being either A or B).

The variable transBlockN is derived as follows.

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPatternLuma >>luma8x8Blkldx) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 luma block with
index luma8x8BIlkIdxN of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

— Otherwise, if ctxBlockCat is equal to7 or 8, the following applies.

The derivation process for neighbouring 4x4 Cb blocks specified in subclause 6.4.10.5 is invoked with
cb4x4BlkIdx as input and the output is assigned to mbAddrN, cb4x4BIlkIdxN (with N being either A or B).

The variable transBlockN is derived as follows.

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPatternLuma >> (cb4x4BIkIdxN >>2)) & 1) is not equal to O for the macroblock
mbAddrN, and transform_size 8x8 flag is equal to 0 for the macroblock mbAddrN, the 4x4 Cb block with
index cb4x4BIlkIdxN of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip or
B_Skip, ((CodedBlockPatternL.uma >> (cb4x4BlkIdxN >>2)) & 1) is not equal to O for the macroblock
mbAddrN, and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cb block with
index (cb4x4BlkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

— Otherwise, if ctxBlockCat is equal to 9, the following applies.

The derivation process for neighbouring 8x8 Cb blocks specified in subclause 6.4.10.3 is invoked with
cb8x8BIlkIdx as input and the output is assigned to mbAddrN, cb8x8BIlkIdxN (with N being either A or B).

ITU-T Rec. H.264 (11/2007) 259

The variable transBlockN is derived as follows.

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPattern.uma >>cb8x8Blkldx) & 1) is not equal to O for the macroblock mbAddrN,
and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cb block with index
cb8x8BIkIdxN of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

— Otherwise, if ctxBlockCat is equal to 11 or 12, the following applies.

The derivation process for neighbouring 4x4 Cr blocks specified in subclause 6.4.10.5 is invoked with
crdx4Blkldx as input and the output is assigned to mbAddrN, cr4x4BIkIdxN (with N being either A or B).

The variable transBlockN is derived as follows.

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM, ((CodedBlockPatternLuma >> (cr4x4BIlkIdxN >>2)) & 1) is not equal to O for the macroblock
mbAddrN, and transform_size 8x8 flag is equal to 0 for the macroblock mbAddrN, the 4x4 Cr block with
index cr4x4BIlkIdxN of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip or
B_Skip, ((CodedBlockPatternLuma >> (cr4x4BIkIdxN >>2)) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cr block with
index (cr4x4BlkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

— Otherwise (ctxBlockCat is equal to 13), the following applies.

The derivation process for neighbouring 8x8 Cr blocks specified in subclause 6.4.10.3 is invoked with
cr8x8BIkldx as input and the output is assigned to mbAddrN, cr8x8BIkIdxN (with N being either A or B).

The variable transBlockN is derived as follows.

— If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I PCM,, ((CodedBlockPatternLuma >>cr8x8Blkldx) & 1) is not equal to 0 for the macroblock mbAddrN,
and transform_size 8x8 flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cr block with index
cr8x8BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

— Otherwise, transBlockN is marked as not available.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

— If any of the following conditions is true, condTermFlagN is set equal to 0.

mbAddrN is not available and the current macroblock is coded in Inter prediction mode.

mbAddrN is available and transBlockN is not available and mb_type for the macroblock mbAddrN is not equal
to I PCM.

The current macroblock is coded in Intra prediction mode, constrained intra pred flag is equal to 1, the
macroblock mbAddrN is available and coded in Inter prediction mode, and slice data partitioning is in use
(nal_unit_type is in the range of 2 through 4, inclusive).

— Otherwise, if any of the following conditions is true, condTermFlagN is set equal to 1.

mbAddrN is not available and the current macroblock is coded in Intra prediction mode.

mb_type for the macroblock mbAddrN is equal to I PCM.

— Otherwise, condTermFlagN is set equal to the value of the coded block flag of the transform block transBlockN
that was decoded for the macroblock mbAddrN.

The variable ctxIdxInc(ctxBlockCat) is derived by

260

ctxIdxInc(ctxBlockCat) = condTermFlagA + 2 * condTermFlagB (9-13)

ITU-T Rec. H.264 (03/2005)

9.3.3.1.1.10 Derivation processof ctxldxInc for the syntax element transform_size 8x8 flag
Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.
— If any of the following conditions is true, condTermFlagN is set equal to 0.
— mbAddrN is not available,
— transform_size 8x8 flag for the macroblock mbAddrN is equal to 0.
— Otherwise, condTermFlagN is set equal to 1.
The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (9-14)

9.3.3.1.2 Assignment process of ctxldxlnc using prior decoded bin values

Inputs to this process are ctxIdxOffset and binldx.

Output of this process is ctxIdxInc.

Table 9-41 contains the specification of ctxIdxInc for the given values of ctxIdxOffset and binldx.

For each value of ctxIdxOffset and binldx, ctxIdxInc is derived by using some of the values of prior decoded bin values
(by, by, by,..., by), where the value of the index k is less than the value of binldx.

Table 9-41 — Specification of ctxldxlnc for specific values of ctxldxOffset and binldx

Value (name) of ctxldxOffset | binldx ctxldxlnc

4 (b; I=0)75:6

5 (bs 1= 0)26:7

14 2 (b 1= 1)?22:3
17 4 (bs 1= 0)?22:3
27 2 (b 1= 0)?24:5
32 4 (bs 1= 0)?22:3
36 2 (b 1= 0)?22:3

9.3.3.1.3 Assignment process of ctxldxInc for syntax elements significant_coeff_flag, last_significant_coeff_flag,
and coeff_abs level _minusl

Inputs to this process are ctxIdxOffset and binldx.
Output of this process is ctxIdxInc.

The assignment process of ctxldxInc for syntax elements significant coeff flag, last significant coeff flag, and
coeff abs level minusl as well as for coded block flag depends on categories of different blocks denoted by the
variable ctxBlockCat. The specification of these block categories is given in Table 9-42.

ITU-T Rec. H.264 (11/2007) 261

Table 9-42 — Specification of ctxBlockCat for the different blocks

Block description maxNumCoeff ctxBlockCat
block of luma DC transform coefficient levels 16 0
(i.e., list Intral6x16DCLevel as described in subclause 7.4.5.3)
block of luma AC transform coefficient levels 15 1
(i.e., list Intral6x16ACLevel[i] as described in subclause 7.4.5.3)
block of 16 luma transform coefficient levels 16)
(i.e., list LumaLevel[i] as described in subclause 7.4.5.3)
block of chroma DC transform coefficient levels when ChromaArrayType is equal to 1 or 2 4 * NumC8x8 3
(i.e., list ChromaDCLevel as described in subclause 7.4.5.3)
block of chroma AC transform coefficient levels when ChromaArrayType is equal to 1 or 2 15 4
(i.e., list ChromaACLevel as described in subclause 7.4.5.3)
block of 64 luma transform coefficient levels 64 5
(i.e., list LumaLevel8x8[i] as described in subclause 7.4.5.3)
block of Cb DC transform coefficient levels when ChromaArrayType is equal to 3 16 6
(i.e., list CbIntral6x16DCLevel as described in subclause 7.4.5.3)
block of Cb AC transform coefficient levels when ChromaArrayType is equal to 3 15 7
(i-e., list CbIntral6x16ACLevel[i] as described in subclause 7.4.5.3)
block of 16 Cb transform coefficient levels when ChromaArrayType is equal to 3 16]
(i.e., list CbLevel[i] as described in subclause 7.4.5.3)
block of 64 Cb transform coefficient levels when ChromaArrayType is equal to 3 64 9
(i.e., list CbLevel8x8[i] as described in subclause 7.4.5.3)
block of Cr DC transform coefficient levels when ChromaArrayType is equal to 3 16 10
(i.e., list CrIntral6x16DCLevel as described in subclause 7.4.5.3)
block of Cr AC transform coefficient levels when ChromaArrayType is equal to 3 15 11
(i.e., list CrIntral6x16ACLevel[i] as described in subclause 7.4.5.3)
block of 16 Cr transform coefficient levels when ChromaArrayType is equal to 3 16 12
(i.e., list CrLevel[i] as described in subclause 7.4.5.3)
block of 64 Cr transform coefficient levels when ChromaArrayType is equal to 3 64 13

(i.e., list CrLevel8x8[i] as described in subclause 7.4.5.3)

Let the variable levelListldx be set equal to the index of the list of transform coefficient levels as specified in subclause

7.4.5.3.

For the syntax elements significant coeff flag and last significant coeff flag in blocks with ctxBlockCat not equal to

3,5, 9, and 13, the variable ctxIdxInc is derived by

ctxIdxInc = levelListldx (9-15)
where levelListldx ranges from 0 to maxNumCoeff — 2, inclusive.
For the syntax elements significant coeff flag and last significant coeff flag in blocks with ctxBlockCat == 3, the
variable ctxIdxInc is derived by

ctxIdxInc = Min(levelListldx / NumC8x8, 2) (9-16)

where levelListldx ranges from 0 to 4 * NumC8x8 — 2, inclusive.

For the syntax elements significant coeff flag and last significant coeff flag in 8x8 luma, Cb, or Cr blocks with
ctxBlockCat == 5, 9, or 13, Table 9-43 contains the specification of ctxldxInc for the given values of levelListldx,

where levelListldx ranges from 0 to 62, inclusive.

262 ITU-T Rec. H.264 (03/2005)

Table 9-43 — M apping of scanning position to ctxldxinc for ctxBlockCat == 5,9, or 13

Belj 1j000 D1 IUB K ISR

10} U |XP |X1D
on on on on on [ag] on on <t <t < < < < <t <t v v v v O el el O o~ o~ o~ o~
(S>100(00 J9EW POPOD PR 1Y)
Be|i}js00 JueolIubsS
JOJ 2U [XP [X10
S (e — [g\l — (e (e} on [ag] (e} (e [ag] on (e (e <t <t
(=)} (o)} — — [e%) — — — e} e} — — [e%) — — (=)} (o)} — — [e%) — — (o)} e} — — — —
(S>00go Joew papod awre 1))
By 1js00 JueolIUbsS
JOJ 2U [XP X1
— [\l on — <t (e} — [q\] on — <t o — [q\] [ag] —
o~ Ne} — — — — Ne} o~ o0 (@) — — (@) o0 O — — — — Ne} (@) — — (@) — — — —
Xp SR
[™M M n [(e} N~ o0} [e)] o — N ™ M._. Lo (o] N~ 0] (@] (@] — [9N] m m_w L0 [{e} N~ [e0] [e]
™ ™ ™ ™ o™ ™ ™ < < < < < < < < < n Lo o n [Te] n Lo o n
Be|j 4200 Ul IUBS 1SR
10} OU IXP |X10
o — — — — — — — — — — — — — — — [\l @\l @\ [\l (gl (gl [\l (gl N N ()] N
(S>100(00 J9EW POPOD PR 1Y)
Be|i}js00 JueolIubsS
JOJ JU [XP [X10
(e (e — [q\] — (e} (e
[« — — (@] o o on < wv O ~ o~ o~ (el <t wv O (@)Y — — [e2e] — — — N (o)) — —
($>00|go Joew papod awe 1))
By 1js00 JueolIubsS
JOJ 2U [XP X1
o — (q\] on < wv wv < <t on on <t <t < wv wv < <t <t < o on O o~ o~ o~ [ee] N
Xp[s1pAs|
o — N (32} < n © N~ [e0) (o)) o - N ™ < L0 (e} N~
o — N ™ < o [{e} M~ o0} ()] — — — — — — — — - — N N N N N N N N

263

I TU-T Rec. H.264 (11/2007)

Table 9-43 — M apping of scanning position to ctxldxlnc for ctxBlockCat == 5,9, or

13

w — (@] w -~ (@]
X ¢ I} X ¢ I}
g8 8% = g8 8% =
- 18 - 1B - B - 18 - 1B -5
-E; E"q—,g E"q—,g S 3 § E"q—,g E"q—,g S 8
w g 38 g 2 8 g . % g 38 g 2 8 g .
r X ¢ x<E X8| o X ¢ %« E X §
o 3 ED -cg'g 35 0 5 S g8 -cg'g 5 9
3 X S B X S B 5] X S B X SO X =
= B E O B E 8 (53 =) = B E O B E 8 [*38)
S o c B S o c B
§E| %z | o §E | B: | o4
28 10 8 2 60 14 14 8
29 9 11 2 61 10 14 8
30 8 12 2 62 12 14 8
31 7 11 2

Let numDecodAbsLevelEql denotes the accumulated number of decoded transform coefficient levels with absolute
value equal to 1, and let numDecodAbsLevelGtl denotes the accumulated number of decoded transform coefficient
levels with absolute value greater than 1. Both numbers are related to the same transform coefficient block, where the

current decoding process takes place. Then, for decoding of coeff abs level minusl, ctxldxInc for
coeff abs_level minusl is specified depending on binldx as follows.
— Ifbinldx is equal to 0, ctxIdxInc is derived by

ctxldxInc = ((numDecodAbsLevelGtl != 0) ? 0: Min(4, 1 + numDecodAbsLevelEql)) 9-17)
— Otherwise (binldx is greater than 0), ctxIdxInc is derived by

ctxIdxInc = 5 + Min(4 — (ctxBlockCat == 3), numDecodAbsLevelGtl) (9-18)

9.3.3.2 Arithmetic decoding process

Inputs to this process are the bypassFlag, ctxIdx as derived in subclause 9.3.3.1, and the state variables codIRange and
codIOffset of the arithmetic decoding engine.

Output of this process is the value of the bin.

Figure 9-2 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context
index ctxIdx is passed to the arithmetic decoding process DecodeBin(ctxIdx), which is specified as follows.

— IfbypassFlag is equal to 1, DecodeBypass() as specified in subclause 9.3.3.2.3 is invoked.

— Otherwise, if bypassFlag is equal to 0 and ctxIdx is equal to 276, DecodeTerminate() as specified in subclause
9.3.3.2.4 is invoked.

— Otherwise (bypassFlag is equal to 0 and ctxIdx is not equal to 276), DecodeDecision() as specified in subclause
9.3.3.2.1 is applied.

264 ITU-T Rec. H.264 (03/2005)

DecodeBin(ctxldx)

Yesj

DecodeBypass

—
@ !

DecodeTerminate

No

'

‘ ‘ DecodeDecision(ctxldx)

Y
Done

Figure 9-2 — Overview of the arithmetic decoding process for a single bin (infor mative)

NOTE — Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p(0) and
p(1)=1-p(0) of a binary decision (0, 1), an initially given code sub-interval with the range codIRange will be subdivided
into two sub-intervals having range p(0) * codlRange and codIRange — p(0) * codIRange, respectively. Depending on the
decision, which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code
string pointing into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the
most probable symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or
LPS, rather than 0 or 1. Given this terminology, each context is specified by the probability p; pg of the LPS and the value of MPS
(vaIMPS), which is either 0 or 1.

The arithmetic core engine in this Recommendation | International Standard has three distinct properties:

The probability estimation is performed by means of a finite-state machine with a table-based transition process between
64 different representative probability states { ppps(pStateldx) | 0 <= pStateldx <64 } for the LPS probability p;ps. The
numbering of the states is arranged in such a way that the probability state with index pStateldx = 0 corresponds to an LPS
probability value of 0.5, with decreasing LPS probability towards higher state indices.

The range codIRange representing the state of the coding engine is quantised to a small set {Qy,...,Q4} of pre-set
quantisation values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed
product values of Q;* prps(pStateldx) allows a multiplication-free approximation of the product
codIRange * pyps(pStateldx).

For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a
separate simplified encoding and decoding bypass process is used.

9.3.3.2.1 Arithmetic decoding processfor a binary decision

Inputs to this process are ctxldx, codIRange, and codIOffset.

Outputs of this process are the decoded value binVal, and the updated variables codIRange and codIOffset.

Figure 9-3 shows the flowchart for decoding a single decision (DecodeDecision).

1.

The value of the variable codIRangeLPS is derived as follows.

Given the current value of cod[Range, the variable qCodIRangeldx is derived by

gCodIRangeldx =(codIRange >> 6) & 0x03 (9-19)

Given gqCodIRangeldx and pStateldx associated with ctxIdx, the value of the variable rangeTabLPS as specified in
Table 9-44 is assigned to codIRangel.PS:

codIRangeLLPS = rangeTabLPS[pStateldx][qCodIRangeldx] (9-20)

ITU-T Rec. H.264 (11/2007) 265

2. The variable codIRange is set equal to codIRange — codIRangeLPS and the following applies.

— If codIOffset is greater than or equal to codlRange, the variable binVal is set equal to 1 - vaIMPS, codIOffset is
decremented by codIRange, and codIRange is set equal to cod[RangeLLPS.

— Otherwise, the variable binVal is set equal to valMPS.

Given the value of binVal, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the
current value of codIRange, renormalization is performed as specified in subclause 9.3.3.2.2.

9.3.3.21.1 Statetransition process

Inputs to this process are the current pStateldx, the decoded value binVal and valMPS values of the context variable
associated with ctxIdx.

Outputs of this process are the updated pStateldx and valMPS of the context variable associated with ctxIdx.

Depending on the decoded value binVal, the update of the two variables pStateldx and valMPS associated with ctxIdx
is derived as follows:

if(binVal == valMPS)
pStateldx = transIdxMPS(pStateldx)
else { (9-21)
if(pStateldx == 0)
valMPS =1 — valMPS
pStateldx = transIdx LPS(pStateldx)

}

Table 9-45 specifies the transition rules transIdxMPS() and transIdxLPS() after decoding the value of vaIMPS and

1 — valMPS, respectively.

gCodIRangeldx = (codIRange>>6) & 3
codIRangeLPS = rangeTabLPS[pStateldx][qCodIRangeldx]
codlRange = codIRange - codIRangeLPS

No—J

binval = valMPS
pStateldx = transldxMPS[pStateldx]

Yes

|

binval = lvalMPS
codlOffset = cod|Offset - codIRange
codlRange = codIRangeLPS

codIOffset >= codIRange

pStateldx == 0? Yesj

‘ valMPS = 1 - valMPS

No ‘

pStateldx = transldxLPS[pStateldx]

v

RenormD

Figure 9-3 —Flowchart for decoding a decision

266 ITU-T Rec. H.264 (03/2005)

Table 9-44 — Specification of rangeTabL PS depending on pStatel dx and gCodl Rangel dx

gCodl Rangel dx

gCodl Rangel dx

pStatel dx pStatel dx

0 1 2 3 0 1 2 3
0 128 176 208 240 32 27 33 39 45
1 128 167 197 227 33 26 31 37 43
2 128 158 187 216 34 24 30 35 41
3 123 150 178 205 35 23 28 33 39
4 116 142 169 195 36 22 27 32 37
5 111 135 160 185 37 21 26 30 35
6 105 128 152 175 38 20 24 29 33
7 100 122 144 166 39 19 23 27 31
8 95 116 137 158 40 18 22 26 30
9 90 110 130 150 41 17 21 25 28
10 85 104 123 142 42 16 20 23 27
11 81 99 117 135 43 15 19 22 25
12 77 94 111 128 44 14 18 21 24
13 73 89 105 122 45 14 17 20 23
14 69 85 100 116 46 13 16 19 22
15 66 80 95 110 47 12 15 18 21
16 62 76 90 104 438 12 14 17 20
17 59 72 86 99 49 11 14 16 19
18 56 69 81 94 50 11 13 15 18
19 53 65 77 89 51 10 12 15 17
20 51 62 73 85 52 10 12 14 16
21 48 59 69 80 53 9 11 13 15
22 46 56 66 76 54 9 11 12 14
23 43 53 63 72 55 8 10 12 14
24 41 50 59 69 56 8 9 11 13
25 39 48 56 65 57 7 9 11 12
26 37 45 54 62 58 7 9 10 12
27 35 43 51 59 59 7 8 10 11
28 33 41 48 56 60 6 8 9 11
29 32 39 46 53 61 6 7 9 10
30 30 37 43 50 62 6 7 8 9
31 29 35 41 48 63 2 2 2 2

ITU-T Rec. H.264 (11/2007) 267

Table 9-45 — State transition table

pStatel dx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
transl dxL PS 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12
transl dxM PS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
pStatel dx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

transl dxL PS 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24

transl dxM PS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

pStatel dx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

transl dxL PS 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33

transldxMPS | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

pStatel dx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

transldxL PS 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63

transldxMPS | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

9.3.3.2.2 Renormalization processin the arithmetic decoding engine
Inputs to this process are bits from slice data and the variables codIRange and codIOffset.
Outputs of this process are the updated variables cod[Range and codlOffset.

A flowchart of the renormalization is shown in Figure 9-4. The current value of codIRange is first compared to 0x0100
and further steps are specified as follows.

— If codIRange is greater than or equal to 0x0100, no renormalization is needed and the RenormD process is finished;

— Otherwise (codIRange is less than 0x0100), the renormalization loop is entered. Within this loop, the value of
codIRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into codIOffset by using read_bits(1).

The bitstream shall not contain data that results in a value of codlOffset being greater than or equal to codIRange upon

completion of this process.

codIRange< 0x0100

Yes
v

codIRange = codIRange << 1
codlOffset = codIOffset << 1
codlOffset = codlOffset | read_bits(1)

Figure 9-4 — Flowchart of renormalization

268 ITU-T Rec. H.264 (03/2005)

9.3.3.2.3 Bypass decoding process for binary decisions
Inputs to this process are bits from slice data and the variables codIRange and codIOffset.
Outputs of this process are the updated variable codlOffset and the decoded value binVal.

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 9-5 shows a flowchart of the
corresponding process.

First, the value of codlOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into codlOffset by using
read bits(1). Then, the value of codlOffset is compared to the value of codIRange and further steps are specified as
follows.

— If codlOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 and codIOffset is
decremented by codIRange.

— Otherwise (codIOffset is less than codIRange), the variable binVal is set equal to 0.

The bitstream shall not contain data that results in a value of codlOffset being greater than or equal to cod[Range upon

completion of this process.
DecodeBypass

codlOffset = codlOffset << 1
codlOffset = codlOffset | read_bits(1)
ers

codlOffset >=
codIRange
binVal =1

codlOffset = codlOffset - codlIRange

Figure 9-5—Flowchart of bypass decoding process

"

binVal =0

9.3.3.2.4 Decoding processfor binary decisions before termination
Inputs to this process are bits from slice data and the variables codIRange and codlOffset.
Outputs of